Cyclic fluctuations of sensorimotor cortex sensory processing in migraine may be important for attack initiation: observations from event related EEG changes MS Mykland¹, MH Bjørk^{2,3}, M Stjern^{1,4}, PM Omland^{1,4}, M Uglem^{1,4} and T Sand^{1,4}

¹Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway, ²Department of Clinical Medicine, University of Bergen, Bergen, Norway, ³Department of Neurology, Haukeland University Hospital, Bergen, Norway, and ⁴Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway.

Objective

Mapping of cyclic fluctuations of cortical activity in the migraine brain in relation to migraine attacks.

Baseline beta activity

- Beta Event Related Desynchronization (Beta-ERD)
- Post Movement Beta Synchronization (PMBS)

Methods

We recorded ERD/PMBS in the beta band (12-19 Hz) during a motor task and a sensorimotor task of right hand movements. More beta suggest less activation or more inhibition.

We performed longitudinal analyses comparing the preictal (< 36 hours before headache attack) and ictal (during) headache attack) phases to the interictal phase.

Figure 1: Grand mean power across subjects at the contralateral C3 electrode for the sensorimotor task in migraine patients for interictal and preictal recordings. First two seconds (-3 to -1) represent pre-movement onset baseline. 0 represent start of movement. Broken vertical lines indicate the selected interval (1 to 3 seconds) for the ERD period.

Conclusion

Results

- Preictal, contralateral increase of baseline beta power and beta-ERD (p < 0,049).
- Preictal, ipsilateral increase of PMBS, post-hoc side difference (p = 0,001).
- Ictal, ipsilateral increase of baseline beta power and decrease of PMBS (p < 0,045).

We found cyclic fluctuations of cortical activation, possibly supporting cortical hyperresponsivity with fluctuating thresholds for inhibitory control in migraine. Culminating alterations of pre-activation and inhibitory thresholds may escalate to a switch in excitatory/inhibitory balance triggering the headache attack.

Cortical Activity			
	Baseline (pre-activation)	Hand movement activation (beta-ERD)	Post movement inhibition (PMBS)
Contralateral			
SOS			

Figure 2: Simplified illustration of cortical activity during baseline, hand movements and post movement inhibitory reset for migraine patients.

Preictal findings indicate lower contralateral sensorimotor cortical pre-activation and increased responsivity during sensory processing, followed by increased

inhibition of the ipsilateral sensorimotor cortex.

During the ictal phase, cortical preactivation and post stimuli inhibition ipsilateral to stimuli decrease, with contralateral normalization.

ST. OLAVS HOSPITAL TRONDHEIM UNIVERSITY HOSPITAL