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◗ Sex Hormones
Nancy E. J. Berman and Michael M. Behbehani

Millions of women suffer migraine headaches around the
time of their menstrual cycles, a phenomenon known as
menstrual migraine. Clinical studies completed over 25
years ago established strong links between falling blood
estrogen levels and triggering of these attacks (126,127).
This chapter addresses current knowledge of likely mecha-
nisms linking hormones to migraine in both the peripheral
and central nervous systems.

Migraine and other pain disorders, including fibromyal-
gia and temporomandibular disorders, are at least twice as
prevalent in women as in men (34,73,76,128,156). In these
conditions, severity of pain varies with the menstrual cy-
cle, peaking around the time of menstruation when both
estrogen and progesterone are lowest (54). Onset of mi-
graine in girls usually occurs around time of menarche
(128), and the frequency and severity of migraine attacks
often increases during menopause, when hormone levels
fluctuate. After menopause, when hormone levels are low,
many migraineurs experience improvement (38). The con-
stant high hormone levels of pregnancy are also associ-
ated with a decrease in migraine frequency (143). Thus,
migraine improves during pregnancy, when estrogen lev-
els are constantly high, and after menopause, when es-
trogen levels are constantly low. All of these observations
indicate a strong link between ovarian steroids and mi-
graine, and they suggest that rapid changes in estrogen
and progesterone levels are a trigger for attacks. Ovarian
steroids act via classical nuclear receptors such as ERα and
ERβ, which regulate transcription by activating or repress-
ing estrogen-responsive genes. Estrogen also activates ele-
ments of the MAP kinase pathway including extracellular-
signaling related kinases (ERKs) (90). Other, more rapid
effects of estrogen may be mediated via membrane estro-
gen receptors (70). Progesterone has two nuclear recep-
tors, PR-A and PR-B, which are identical except for an
additional 164 amino acids at the N-terminal end of PR-B
(42). Progesterone also acts via membrane effects (144).

Hormones could affect pain processing at all levels, in-
cluding peripheral and central mechanisms. Figure 17-1

diagrams regions where hormones could influence trans-
mission of pain information from the peripheral into the
central nervous system.

Peripheral Tissue

Meningeal Inflammation

Throbbing pain suggests an origin in arteries, and it has
been known for many years that meningeal and large cere-
bral arteries are capable of transmitting painful sensa-
tions. Thus, studies of migraine pathogenesis have focused
on meninges and meningeal vessels, and it is thought that
migraine involves meningeal inflammation (95). There
are at least four potential mechanisms whereby ovarian
steroids could modulate meningeal inflammation. First,
meningeal vessels are a potential site of estrogen effects,
as they express estrogen receptor-α, which increases after
estrogen treatment (129). Second, hormones may alter res-
ponses of meningeal mast cells. Estrogen receptors in
dural mast cells modulate histamine release (109), and
histamine excites nociceptive terminals. Third, estrogen
may modulate expression of proinflammatory cytokines
by macrophages present on the meningeal linings of the
subarachnoid space (87) and in the dura, where they are
aligned along blood vessels, especially near the superior
sagittal sinus (85). Proinflammatory cytokines also ex-
cite nociceptive terminals (153). Estrogen modulates ex-
pression of proinflammatory cytokines in macrophages
(68) and reduces leukocyte migration into injured ves-
sels (153). Fourth, ovarian steroids may regulate sensory
sensitization by modulating expression of nerve growth
factor (NGF). Retrograde transport of receptor-bound
NGF stimulates synthesis of CGRP, substance P, and
PACAP (71,72,96). Blocking the high-affinity NGF recep-
tor trkA prevents sensory sensitization following inflam-
mation (14,64). Dural tissue expresses NGF (134), and es-
trogen treatment alters NGF expression in some tissues
(16). Effects of NGF on meninges are unknown.
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FIGURE 17-1. This figure diagrams trigeminal neurons, which have their cell bodies in the trigem-
inal ganglion (E), peripheral processes in meninges and orofacial tissue (D), and central processes
(F) that synapse on cells in the spinal trigeminal nucleus of the brainstem (G). These neurons, like other
sensory neurons, secrete neuropeptides at both their peripheral and central axon terminals. Secretion
of neuropeptides in the periphery affects blood flow and inflammatory responses, and secretion of neu-
ropeptides at the central terminal affects transmission of nociceptive signals. Hormones could affect this
system at all three locations. In the periphery, hormones could alter responses of peripheral tissue to
inflammation or injury by regulating responses of mast cells (A), meningeal arteries (B), or meningeal
macrophages (C). At the neuronal cell bodies (E), hormones may regulate expression of neuropeptides
and other genes that control excitability. Alteration of neuropeptide gene expression may change the mix
of neuropeptides secreted at either the peripheral or central terminals, or both. At the central synapse
(F,G), hormones may alter synaptic transmission by regulating neuropeptides present in central pro-
cesses or by altering gene expression in the brainstem target cells. Hormone receptors are located in
cells at all of these sites, and there is compelling evidence for hormonal influences at many of these
sites.

Trigeminal Neurons

Trigeminal Peripheral Processes

CGRP Innervation of Meninges

The dura is innervated by trigeminal axons containing
substance P and CGRP. Migraine attacks involve selective
release of CGRP from trigeminal axons (43), which causes
plasma extravasation and meningeal edema (23,24,81).
CGRP also functions as a potent vasodilator (101,138),
stimulates mast cell histamine release (101), is highly
chemotactic to macrophages (33), and increases cytokine
release from macrophages (133). Estrogen increases CGRP
innervation of mammary gland tissue, associated pri-
marily with blood vessels (17). It is not known whether
hormones have similar effects on CGRP innervation of
meningeal vessels.

Trigeminal Neuronal Cell Bodies,

Neuropeptides, and Hormone Receptors

The trigeminal ganglion contains several populations of
neurons (see review by Lazarov [69]) that express neu-
ropeptides such as substance P and CGRP, but also
other peptides potentially relevant to migraine including
PACAP, atrial natiuretic peptide, neurokinin A, endothelin-
1, enkephalin, dynorphin cholecystokinin, bombesin, so-
matostatin, vasoactive intestinal peptide, and galanin (see
review by Lazarov [69]). Trigeminal neurons express ERα,
which is likely to regulate expression of many of these
peptides.

Progesterone receptors are present in dorsal root gan-
glia (DRG) of female rats. Ovariectomy reduces ex-
pression of these receptors and increases behavioral
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hypersensitivity to heat (93), suggesting a link between low
progesterone levels and increased pain sensitivity. Proges-
terone may also regulate trigeminal function indirectly via
effects on CGRP and the NGF-trkA system (41). Very little
information is available about the potential role of proges-
terone or its receptors in trigeminal neurons.

Hormones May Alter Responses to

Peripheral Inflammation or Nerve Injury

(Phenotypic Plasticity)

Numerous studies have shown that phenotypic changes
in sensory neurons accompany changes in response to
painful stimuli from temporary to severe and chronic. Cu-
taneous allodynia occurs in certain well-defined regions
of the skin during migraine, suggesting hyperexcitability
of pain pathways (22), and migraineurs have significantly
lower thresholds for the blink reflex and an increased sen-
sitivity to tactile and painful stimuli, even during the in-
terictal period (115). These increased responses indicate
sensitization of trigeminal neurons.

Phenotypic plasticity of nociceptive sensory neurons is
regulated by the NGF-trkA system (88). Small DRG neu-
rons that are positive for CGRP transport NGF from the
periphery (1,152). During inflammation, NGF levels
increase (110) resulting in inflammatory hyperalgesia
(84,150–151,152). Inflammation of orofacial tissue results
in increased CGRP and substance P in the trigeminal gan-
glion (53). In addition, motifs that mimic a classical es-
trogen response element are found in the promoter and
5′-flanking regions of the genes for human trkA (125,135).

Sensory sensitization is associated with altered expres-
sion of neuropeptides (NP) such as NPY and galanin in
trigeminal neurons in males (35,40). In females, NPY and
galanin are regulated by ovarian steroids. NPY is a vaso-
constrictive peptide usually associated with the parasym-
pathetic nervous system. NPY-immunoreactive nerve
fibers and receptors are expressed around cerebral ves-
sels (12), and NPY inhibits dural plasma protein extrava-
sation after trigeminal stimulation (155). Increased levels
of NPY are present in cerebral spinal fluid after a migraine
attack (139). Both Y1 and Y2 NPY receptors are located
in trigeminal ganglia (131). NPY mRNA levels vary with
the phase of the estrous cycle in female mice, with high-
est levels present at early estrus (104). Galanin increases
markedly after nerve injury (49), when it regulates noci-
ceptive signaling (50,62,63,75). In male mice, injury in-
creases the galanin content of dorsal root ganglion cells
120-fold and the number of galanin positive neurons in-
creases from 5% to more than 50% (2). Galanin injections
into inflamed knee joints in rats cause a significant reduc-
tion in responses to noxious movements, suggesting that
galanin is a critical component of the tonic inhibitory sys-
tem for inflammatory pain (47). In the pituitary, estrogen

upregulates galanin mRNA expression up to 4000-fold and
immunoreactivity up to 50-fold (59). In mice, galanin ex-
pression in trigeminal neurons is highest at proestrus, the
stage of the estrous cycle when estrogen levels are high-
est (104). Galanin has several G-protein–coupled receptors
including GalR1, GalR2, and GalR3 (20). GalR1, which
has antinociceptive functions (52,61,74), is expressed in
trigeminal ganglia and in peripheral targets of trigeminal
neurons (130). GalR1 expression in the hypothalamus is
modulated by ovarian steroids and is highest at proestrus
(37). It is not known if ovarian steroids regulate GalR1
expression in the trigeminal system.

Intracellular Signaling Pathway

Inflammatory mediators produce hyperalgesia via acti-
vation of intracellular signaling pathways including mem-
bers of the MAP kinase pathway ERKs (55). Activation of
nociceptive fibers induces phosphoERK (pERK) in sen-
sory neurons in an intensity-dependent manner, and ERK
antagonists inhibit capsaicin-induced hyperalgesia (31).
Ovarian steroids can modulate the activity of the ERK
pathway (67).

Potential Effects of Ovarian Steroids
on Trigeminal Central Processes and
Postsynaptic Cells

Inflammation increases in the number of substance P and
CGRP immunoreactive axons in the dorsal horn, whereas
nerve injury increases galanin and NPY (51). The extent
of neuroplasticity of trigeminal central terminals and po-
tential effects of ovarian steroids on these responses have
received little attention. Ovarian steroids may also regu-
late activity of postsynaptic cells directly, as neurons in
lamina II of trigeminal nucleus caudalis (TNC) express
ERα, and the number of these cells increases after ovariec-
tomy (102). ERα is also present in nucleus caudalis (123).
Changes in excitability of brainstem trigeminal neurons
may underlie the increases in receptive field sizes in the
spinal trigeminal nucleus observed when estrogen levels
are high (9,10).

INTERACTIONS OF SEX HORMONES
WITH BRAIN PAIN PROCESSING
NETWORKS

Overall Network

The information regarding the peripheral action of sex
hormones has been obtained from experimental animals.
This is because there are no noninvasive techniques that
can provide this type of information using human sub-
jects. More data on the role of sex hormones in the
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central processing of trigeminal pain processing in human
are known because of the advances in imaging techniques.
The currently available information from human studies
correlates well with the animal studies of the role of sex
hormones.

Information related to activation of sensory terminals
innervating the dura and meninges are transmitted to neu-
rons within the nucleus caudalis of the trigeminal com-
plex. Functionally, this region, and its caudal extent into
the cervical spinal cord, integrate nociceptive information
arriving from the periphery and the descending systems
and transmits this information to the medullary, pontine
thalamic, and hypothalamic regions (11,26,118). Anatomic
studies using injection of retrograde tracers into the TNC
have identified four major sites as targets of TNC projec-
tions (26,32,46,78–80,94,99,107,108,119,148). These sites
are the periaqueductal gray (PAG), the parabrachial nu-
cleus (PBN), medial preoptic nucleus of the hypothala-
mus, and the ventrobasal nucleus of the thalamus. Fur-
ther, injections of anterograde tracers into each of these
sites indicate site-specific afferents from the TNC neu-
rons that in turn receive afferents from the meninges and
dura. The sites that receive afferents from TNC contain
a dense population of sex hormone receptors and termi-
nals. Therefore, changes in the level of these hormones
can modulate signal processing within the TNC and prop-
agation of these signals to the forebrain. The functions re-
lated to sex hormones in each of these sites are discussed
next.

Parabrachial Nucleus

The PBN is a major integration site for cardiovascular con-
trol and pain modulation. The PBN is a part of the central
autonomic circuitry that governs the autonomic response
to changes in visceral functions (136). The PBN receives
inputs from the nucleus of solitary tract and projects to
the PAG, hypothalamus, and amygdala (13). There are re-
ciprocal connections between PBN and it major outputs.
The PBN receives nociceptive information from both the
spinal and the trigeminal dorsal horns. Inputs from the
trigeminal dorsal horn terminate predominantly in three
regions of the PBN: the external lateral, the external me-
dial, and the Kolliker-Fuse subnuclei, with sparser label-
ing present in the dorsal and superior lateral subnuclei
and in the medial PBN. The anatomic organization of
the PBN supports the hypothesis that this region is in-
volved in autonomic symptoms associated with headache
and migraine. Although this issue remains controversial,
there is substantial evidence that the autonomic nervous
system function is altered in migraine patients (103).
Among the components of the changes in this system, a
decrease in the basal level of norepinephrine (44,82), in-
creased sensitivity to α-adrenergic agonists (44), increased
sensitivity to cold pressor test (132), and increased sen-

sitivity of the pupil to pharmacologic stimulation (36)
have been documented. Based on these findings, Peroutka
(103) has proposed that the initial vasoconstriction pro-
duced by norepinephrine is replaced by vasodilatation pro-
duced by dopamine, prostaglandin, and adenosine that
are coreleased with norepinephrine from the sympathetic
terminals.

In addition to its role in the central autonomic con-
trol network, the PBN has profound inhibitory effects on
the spinal and trigeminal dorsal horn neurons in both the
marginal zone and substantia gelatinosa regions (27,58,
86,146,149,154). The mechanisms that activate this de-
scending system are not fully understood. However, the
PBN is a part of the stress-induced analgesic system that
includes the PAG, central nucleus of amygdala, and several
hypothalamic regions (92).

Considering the properties of the PBN, changes in the
activity of this region can have a profound effect on pain
processing through the trigeminal system. Of significant
interest is the fact that all subregions of the PBN that are
involved in autonomic and pain modulation contain estro-
gen receptors and terminals (113,114,117). Functionally,
the effect of estrogen injected into the PBN has been in-
vestigated. Studies by Saleh et al. have shown that injection
of estrogen into the PBN significantly increases parasym-
pathetic tone and decreases sympathetic tone, reflected as
a significant decrease in blood pressure and heart rate.
These effects of estrogen can be reversed by NMDA recep-
tor antagonist and GABA receptor antagonist, indicating
involvement of these receptors in the effects of estrogen
on the autonomic system modulated by PBN (111,112).
In addition, single unit recording from PBN neurons have
shown that estrogen has an inhibitory effect by potenti-
ation of GABAergic and reduction of glutamatergic tone
(113).

Periaqueductal Gray

The PAG is a major site for integration of nociceptive, auto-
nomic and reproductive behavior (6,91). Anatomically, the
PAG has been divided in four subregions: dorsal, dorso-
lateral, lateral, and ventrolateral (4,8). Stimulation of dif-
ferent regions of the PAG produces a number of distinctly
different behavioral and physiologic responses including
vocalization, autonomic changes, sexual behavior, fear and
rage reactions, and anxiety. Only stimulation of the ventro-
lateral and the dorsomedial parts of dorsal raphe produces
relatively pure analgesia.

The PAG areas that receive afferents from the TNC and
the areas that project to the TNC contain estrogen recep-
tors and terminals (18,25,97,98,100,106,122,140,141). Es-
trogen has a significant effect on the synaptic morphol-
ogy of the PAG neurons. Studies by Chung et al. (28) have
shown that ovariectomized adult female rats treated with
daily subcutaneous injections of estradiol benzoate for
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20 days showed significant changes in the synaptic mor-
phology including an increase in the number of synapses,
the length of postsynaptic densities (PSDs), the num-
ber of PSDs showing perforations, synapses with posi-
tive synaptic curvature, dense-cored vesicles, and mean
number of terminals that contained dense-cored vesicles.
Functionally, the effects of gonadectomy and ovariec-
tomy on the analgesic effect of morphine have been stud-
ied (65,66). These studies indicated that central mor-
phine analgesia is significantly greater in male than in
female rats. In addition, using a selective µ-opioid re-
ceptor agonist and a δ-opioid receptor agonist, Kepler
et al. (60) have shown that sham-operated male rats dis-
played significantly greater magnitudes of peak and total
analgesia than sham-operated female rats on the tail-flick
test. In addition to a direct effect on opioids, the effects
of sex hormones on two types of stress-induced anal-
gesia have been examined. Using continuous cold wa-
ter swim and intermittent cold water swim, studies by
Bodnar have shown that female rats display significantly
less analgesia than males, and gonadectomized rats dis-
play significantly less analgesia than sham-operated
controls (19).

The anxiety circuitry of the PAG also depends on sex
hormones. In behavioral studies, mice show maximal anx-
iety levels in diestrus. The minimal anxiety level is found
at metestrus. As a related processes, the ability to acquire
conditional response is the highest in female rats during
proestrus (29,121). In general, progesterone has an anxi-
olytic effect (15).

Considering the literature cited, changes in both estro-
gen and progesterone can have significant effects on as-
cending pain transmission through the PAG as well as on
PAG-mediated analgesia.

Medial Proptic Nucleus
of Hypothalamus

Nociceptive information from the trigeminal sensory sys-
tem is propagated to the hypothalamus by a direct pro-
jection from the TNC (21,77,94). The major site of termi-
nation of these afferents is the medial preoptic nucleus.
This nucleus is involved in modulation of pain and analge-
sia (7,30), response to stress (120), temperature regulation
(3,116), reproductive behavior (5), sleep–wakefulness (57),
and autonomic control (145).

The medial preoptic nucleus plays an important role in
integration and coordination of autonomic information
relayed through the solitary nucleus and PBN and with
the sensory information relayed through the dorsal horn
and the reticular formation (91). Medial preoptic nucleus
forms reciprocal connections with the prefrontal cortex,
amygdala, PAG, nucleus tractus solitarii (NTS), and
rostral ventral medulla and through these connections
it is involved in cognitive and motivational aspects of

pain. The pain inhibitory influence of the medial preoptic
nucleus is relayed through the PAG (45) and the rostral
ventral medulla (56).

The medial preoptic nucleus contains estrogen- and
progesterone-containing neurons and their receptors
(122,124). Physiologic studies of the effects of estrogen
on the preoptic area have indicated that estrogen has a
significant effect on opioidergic and GABAergic transmis-
sion. Micevych et al. (89) have shown that estrogen treat-
ment induced an internalization of µ-opioid receptors in
the medial preoptic nucleus of ovariectomized wild-type
mice that is mediated through estrogen receptor-α. This
effect of estrogen may in part explain observations that in
rodents and humans the analgesic effect of morphine is al-
tered by stages of the estrous cycle (39). Estrogen potenti-
ates the GABAergic transmission within the hypothalamic
nuclei including the medial preoptic nucleus (48,105). As
mentioned, the medial preoptic nucleus has a strong in-
teraction with the limbic areas and brainstem pain mod-
ulatory networks. Considering these interactive networks,
changes produced by sex hormones on the medial preoptic
nucleus neurons suggest strong involvement of this region
on hormone-related pain modulation.

Locus Coeruleus

Studies by Weiller et al. (142) using PET imaging have
indicated an increase in regional cerebral blood flow in
the brainstem at or near the locus coeruleus/subcoeruleus
(LC/SC) region during spontaneous migraine attacks in
migraine without aura. These studies also showed that
the changes in blood flow persisted despite relief of symp-
toms following subcutaneous injection of sumatriptan.
They concluded that in migraine without aura, brainstem
activation during spontaneous migraine may be inherent
to migraine and not simply its consequence. The mecha-
nisms that relate to the involvement of LC/SC in headache
are not totally clear. Anatomic studies have shown that
LC/SC innervates all subnuclei of the trigeminal sensory
nuclear complex (83,123,147). Electrophysiologic studies
have shown that stimulation of LC/SC inhibits the re-
sponse of the TNC to noxious stimulation (137). There is
substantial evidence that neurons in the LC/SC respond
to noxious stimulation (91); therefore, the pathway be-
tween LC and TNC may form a feedback system through
which the pain produced by noxious stimulation of in-
flammation is reduced. In this regard, the basal activity
of the LC/SC neurons can be of significant importance in
pain modulation. Recent studies have shown that estro-
gen increases mRNA levels of tyrosine hydroxylase (TH)
in the LC. Because the LC has an inhibitory role in pain
transmission through the trigeminal system, an increase
in the level of TH may lead to enhanced inhibitory tone
on the trigeminal neurons when the estrogen level is high.
This processes may be a contributing factor to “estrogen
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withdrawal” migraine that develops when estrogen level
falls.

SUMMARY

In summary, nociceptive information arising from the
head, the dura, and meninges is processed within the TNC.
There is substantial integration within the TNC, and sex
hormones can modulate these activities at the local circuits
in this nucleus. Following integration, the information is
propagated to the higher centers through a highly inter-
connected parallel system to the midbrain, thalamus and
hypothalamus. The areas that receive afferents from TNC
are interconnected and communicate with major limbic
systems of the brain. Sex hormones have modulatory roles
in all of these regions. The symptoms associated with the
effects of changes in sex hormone levels can be explained
by the effects of these hormones at each of these sites.
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