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◗ Potential New Drugs for Acute and
Prophylactic Treatment of Migraines
Peter J. Goadsby and Nabih M. Ramadan

INTRODUCTION

Headache is the most common reason for neurologic re-
ferral (10), and the majority of disabling headache has
migraine as its biological basis. Migraine is certainly com-
mon (74), often very disabling (81), and increasingly rec-
ognized as a fundamentally neurologic disorder (49). Al-
though many patients are now adequately treated with the
therapies developed in the 1990s, there is still a substan-
tial group of patients who continue to suffer and require
better treatment (71). Here we try to capture possible ap-
proaches to both acute and preventive treatment of mi-
graine that have emerged from laboratory science in the
last decade. We have recently written on promising targets
in other primary headaches (39). Here we cover targets for
which there are clinical data to make some balance; else-
where we cover targets promising because of effects on
trigeminovascular nociceptive traffic, but without clinical
data, such as the nociceptin (ORL-1) receptor, cannabinoid
receptor, orexin receptors, and transient receptor potential
(TRPV1 or VR-1) family receptor mechanisms, have been
presented (38).

SEROTONIN RECEPTORS

Although there are a range of acute and preventive thera-
pies for migraine (71), serotonin 5-HT1B/1D receptor ago-
nists, triptans (36), stand out in terms of clinical and neu-
roscientific impact. The triptans are safe (18) and effective
in migraine (27,28). However, the development of triptans
left a so-called smoking gun by constricting vessels; did
this mean migraine was after all a vascular disease, and
could future developments disentangle the clinically unde-
sirable, albeit small vascular risk penalty of triptans, and
develop purely neurally acting medicines? Can the useful
effects of 5-HT receptor agonism be dissected from the
vascular complications?

5-HT1F Receptor Agonists

The potent specific 5HT1F agonist LY334370 was devel-
oped (94) and shown to block neurogenic plasma pro-
tein extravasation in the rat dura mater (63). Activation
of 5-HT1F receptors does not seem to have vascular ef-
fects (14,100). LY334370 is effective in acute migraine, al-
beit at doses with some central nervous system side ef-
fects and no cardiovascular problems (50). Unfortunately
development was stopped because of a nonhuman toxi-
city problem. 5HT1F receptors are found in the trigem-
inal nucleus (11,30,90,134) and trigeminal ganglion (7).
5-HT1F receptor activation is inhibitory in the trigeminal
nucleus in rat (82) and cat, albeit in cat seeming less po-
tent than 5HT1B or 5HT1D receptor activation (41). Using
electron microscopic methods, presynaptic 5-HT1F recep-
tors in the trigeminal nucleus of the cat have been reported
(77). There is a good expectation that 5-HT1F receptor ag-
onists would be both nonvascular and probably useful in
migraine (98) and cluster headaches.

5-HT1D Receptors

5HT1D receptor agonists are potent inhibitors of neuro-
genic dural plasma protein extravasation (133) and have
no vascular effects. Peptidergic nociceptors express these
receptors (95) in a manner that is activation dependent
(2). Specific potent 5HT1D agonists have been developed
by taking advantage of similarities between human and
nonhuman primate 5HT1B and 5HT1D receptors (96). The
compound that went into clinical studies, PNU 142633,
was ineffective (51), although it was a relatively weak ago-
nist when compared to sumatriptan in in vitro studies (97),
and was poorly brain penetrant. This compound was de-
veloped using gorilla receptors (81). It must, therefore, be
asked whether this was the correct compound to test the
5-HT1D hypothesis. Interestingly, there were no complaints
of adverse events of a cardiovascular nature in the placebo
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group, with cardiovascular adverse events, including chest
pain, in the PNU 142633-treated group (29). Preclinical
studies are able to dissect out a potent 5-HT1D receptor–
mediated inhibition of the trigeminocervical complex (41),
so that this mechanism remains both plausible and not
fully tested.

CALCITONIN GENE-RELATED PEPTIDE
RECEPTORS

The trigeminal innervation of the cranial circulation con-
tains a number of neuropeptides, of which the most im-
portant for migraine seems to be calcitonin gene-related
peptide (CGRP) (23). Stimulation of the trigeminal gan-
glion in cat and humans results in elevations in CGRP and
substance P levels in the cranial circulation (46). However,
during acute attacks of migraine (31,47), cluster headache
(25,43), and paroxysmal hemicrania (45), CGRP is elevated
but substance P is not. Similarly, nitroglycerin-induced mi-
graine, which is very similar to the spontaneous attack
(1,125), also exhibits increased levels of CGRP in plasma
(64). Triptans inhibit CGRP release in the superior sagit-
tal sinus of the rat (9) and in the spinal cord of the cat
(5). Triptans inhibit release of CGRP into the cranial cir-
culation of experimental animals when it is evoked by
trigeminal ganglion activation (42,44). Similarly, stimula-
tion of the superior sagittal sinus in cat leads to cranial
release of CGRP (135), which can be blocked by triptans,
but not by specific inhibits of neurogenic dural plasma
protein extravasation (67,68). Interestingly, triptans also
influence the CGRP promoter (21), and regulate CGRP
secretion from neurons in culture (20). All of these data
would predict that a CGRP receptor antagonist would
have antimigraine effects and not need have vascular
actions.

Successful treatment of acute migraine (42) or clus-
ter headache (25,43) with sumatriptan normalizes cra-
nial CGRP levels. Moreover, local microiontophoresis of
the CGRP-receptor antagonist BIBN4096BS (19,85) in-
hibits trigeminocervical neurons (121). This potent CGRP-
receptor antagonist has been shown to be effective in the
treatment of acute migraine (86) and is devoid of vasocon-
strictor actions in humans (92,93). CGRP antagonists may
have a preventive as well as acute attack effects that merits
consideration and eventual study. They hold great promise
for both migraine and cluster headaches.

GLUTAMATE EXCITATORY AMINO
ACID RECEPTOR ANTAGONISTS

Glutamate is the major excitatory neurotransmitter and
plays an important role in conveying sensory and no-
ciceptive information in the brain and spinal cord. It

acts through both ionotropic (ion channel–type) and
G-protein–coupled (metabotrophic) receptor families.
Glutamatelike immunoreactivity has been seen in tooth
pulp neurons that project to the trigeminal nucleus cau-
dalis in the rat (13); glutaminase immunoreactivity is
most dense in the nucleus caudalis when compared
with other parts of the trigeminal nucleus of the rat
(76). Each of N-methyl-D-aspartate (NMDA), α-amino-3-
hydroxy-5-methylisoxazole-4-proprionic acid (AMPA), kai-
nite, and metabotropic glutamate receptors have been
identified in the superficial laminae of the trigeminal nu-
cleus caudalis of the rat (124). Ionotropic receptor chan-
nel blockers, such as MK-801 acting at the NMDA re-
ceptor, and GYKI-52466, acting at the AMPA receptor,
have been found to block trigeminovascular nociceptive
transmission in the trigeminocervical nucleus (12,40,122).
Similarly, both NMDA and non-NMDA ionotropic recep-
tor blockades reduces fos protein expression in trigem-
inal nucleus caudalis associated with intracisternal cap-
saicin injection (83,84). Last, glutamate receptors are
involved in transmission of trigeminovascular nocicep-
tive information in the ventrobasal thalamus (115).
This glutamate-mediated thalamocortical transmission,
which must be crucial in the appreciation of head pain,
can be modified by β-adrenoceptor antagonists effective
in migraine, such as propranolol, by a β1-mechanism
(99,114).

Consistent with these preclinical data there are small
trials that suggest glutamate blockade as a strategy to
treat migraine. A mixed AMPA/kainate receptor antago-
nist, LY293558, when given by intravenous injection, was
shown to be effective and well tolerated in acute migraine
(105). Interestingly, ketamine, which acts at the glutamate
NMDA receptor, reduced aura symptoms in patients with
familial hemiplegic migraine in an open-label study (65).
Taken together these data speak to a high likelihood that
glutamate receptor antagonists would have effects in both
migraine and cluster headaches.

NITRIC OXIDE MECHANISMS AS
TARGETS FOR MEDICINE
DEVELOPMENT

Much has been written of nitric oxide (NO) and mi-
graine, and this review cannot hope to do this area
justice (87,126,127). Moreover, NO donors are clearly
effective triggers of acute cluster headache (24). Some
important mechanistic data in migraine are cited here
because they bear on the issue of nonvascular thera-
peutic development. It has been considered that nitro-
glycerin triggers migraine, or indeed cluster headache,
by a necessary dilation of cranial vessels (62). How-
ever, three recent observations suggest that dilation is an
epiphenomenon. First, nitroglycerin triggers premonitory
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symptoms in many patients (1). These were no different to
those reported in spontaneous attacks (35) and occurred
well after any vascular change would have been present.
Second, downstream activation of the cyclic guanosine
monophosphate pathway by sildenafil can induce mi-
graine without any change in middle cerebral artery diam-
eter (70). Third, dilation of the internal carotid artery after
nitroglycerin administration in cluster headache patients
is dissociated in time from the onset of the attack (79).
Taken together these observations suggest that although
NO mechanisms may play a role in some part of the patho-
physiology of these disorders, it need not be a vascular
effect. A role, for example, of inducible NO synthase has
been suggested (102), or in inhibition of trigeminocervical
complex fos expression with NO synthase blockade has
also been reported (58). Both examples provide a nonvas-
cular approach, although potentially with rather different
NO synthase subtype targets. The available data, therefore,
suggest that NO-based developments may find clinical util-
ity in both migraine and cluster headaches.

ADENOSINE A1 RECEPTORS

There is a substantial literature to suggest that the purine,
adenosine, may have some role in nociception (107,108).
Based on studies comparing the rank order of potency
of adenosine analogs (109), or on the use of selective
adenosine agonists and antagonists (119), it is likely that
the antinociceptive effects of adenosine are mediated via
the A1 receptor (109). Adenosine may contribute to the
antinociceptive effects of morphine (16) and serotonin
(15). The adenosine A1 receptor protein has been localized
in human trigeminal ganglia (110), which suggests a po-
tential ability of adenosine A1 receptor agonists to inhibit
the trigeminal nerve.

It has been shown that two highly selective adeno-
sine A1 receptor agonists, GR79236 (52) and GR190178
(113), can inhibit trigeminovascular activation, both in
the trigeminal nucleus and by inhibition of release of
CGRP in the cranial circulation (48). The effect within the
trigeminal nucleus reflects a central action, and inhibition
of CGRP release is likely to be attributable to an action
at adenosine A1 receptors on peripheral terminals of the
trigeminal nerve (48). Both effects are in keeping with the
concept of adenosine A1 receptors being located prejunc-
tionally on primary afferent neurons and causing inhibi-
tion of transmitter release, as has been described in other
systems (106). Adenosine A1 receptor agonists, such as
GR79236 have no effect on resting meningeal artery diam-
eter in rats (57). Moreover, GR79236 can inhibit the noci-
ceptive trigeminal blink reflex (66) at doses in humans (34)
that are both trigeminally inhibitory and without vascular
effects in experimental animals. Humphrey et al. (60) re-
ported a successful proof-of-concept study with an adeno-

sine A1 receptor agonist some years ago during a presen-
tation at an International Headache Congress (New York,
USA 2001), although the full details of the study have not
yet been published. Such a result again demonstrates that
a neurally based strategy is possible, although for this tar-
get other systemic pharmacodynamic effects may preclude
its further development.

SOMATOSTATIN RECEPTOR AGONISTS

Effective in Cluster Headache
But Not in Migraine

Somatostatin, an endogenously occurring 14-amino acid
peptide, has been shown to inhibit the release of numer-
ous vasoactive peptides, including CGRP (56) and vasoac-
tive intestinal polypeptide (26). Neurons containing so-
matostatin are found in the regions of the central and
peripheral nervous systems involved in nociception, such
as peripheral sensory fibers, dorsal horn of the spinal
cord, trigeminal nucleus caudalis, periaqueductal gray,
and the hypothalamus (61,69,111). Somatostatin mediates
its actions by binding to high-affinity membrane recep-
tors. Five somatostatin receptors (sst1−5) have been cloned
(59), with octreotide acting predominantly on sst2 and sst5

(91).
Two studies have evaluated the abortive effect of so-

matostatin in migraine. In the first study, intravenous so-
matostatin (25 µg/min for 20 minutes) was compared to
treatment with ergotamine (250 µg intramuscularly), or
placebo in a double-blind trial comprising 72 attacks in
8 patients (117). Infusion of somatostatin reduced the
maximal pain intensity and the duration of pain signif-
icantly compared to placebo, and to a degree compara-
ble to intramuscular ergotamine. In another randomized,
double-blind study subcutaneous somatostatin was com-
pared with ergotamine (33). Five patients were treated
for three attacks by each of the drugs. Subcutaneous so-
matostatin and ergotamine were equally beneficial as re-
gards effects on maximal pain intensity and the pain area,
but somatostatin was less effective in reducing the dura-
tion of pain. Given the distribution and effects of somato-
statin in preclinical models we embarked on two placebo-
controlled, double-blind crossover studies to test the
principle of somatostatin receptor agonism in migraine
and cluster headache. We used octreotide, a somatostatin
analog with a half-life of approximately 1.5 hours (54), be-
cause somatostatin needs to be infused and octreotide can
be given subcutaneously as an outpatient.

For the first study, patients with migraine with and
without aura as classified by the International Headache
Society (55) were recruited to a double-blind placebo-
controlled crossover study. They were instructed to treat
two attacks of at least moderate pain severity, with at
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least a 7-day interval, using subcutaneous 100 µg oc-
treotide or matching placebo. The primary endpoint was
the headache response, defined as severe or moderate pain
becomes mild or nil, at 2 hours. The study was powered
to detect a 30% difference at an α of 0.05 and a β of 0.8.
Fifty-one patients were recruited, of whom 42 provided ef-
ficacy data on an attack treated with octreotide, and 41
with placebo. The 2-hour headache response rates were
20% for placebo and 14% for octreotide, and the 2-hour
pain free rates were 7% and 2%, respectively. The study
concluded that subcutaneous octreotide 100 µg is not ef-
fective in the acute treatment of migraine when compared
to placebo (73).

For the second study, patients with episodic and
chronic cluster headache, as defined by the Interna-
tional Headache Society, were recruited to a double-blind
placebo-controlled crossover study. They were instructed
to treat two attacks of at least moderate pain severity, with
at least a 24-hour break, using subcutaneous octreotide
100 µg or matching placebo. The primary endpoint was the
headache response, defined as very severe, severe, or mod-
erate pain becomes mild or nil, at 30 minutes. Fifty-seven
patients were recruited, 46 of whom provided efficacy data
on attacks treated with octreotide and 45 with placebo.
The headache response rate with subcutaneous octreotide
was 52%; with placebo was 36%. Modeling the treatment
outcome as a binomial where response was determined
by treatment, and considering period effect, gender, and
cluster headache type as other variables of interest, sub-
cutaneous octreotide 100 µg was significantly superior to
placebo (P < .01) (78).

The studies suggest an interesting difference between
migraine, where octreotide was not effective, and cluster
headache where it had a modest but clear effect. Many
issues arise, including whether more suitable, probably
more brain-penetrant substances would have a better out-
come and how the treatments would perform with re-
peated use. Certainly the data demonstrate a nonvasocon-
strictor, effective acute therapy for cluster headache, which
has generic important implications for medicine develop-
ment for the condition.

CORTICAL SPREADING DEPRESSION
INHIBITORS

The clinical features of migraine aura (103) and the key fea-
tures of cortical spreading depression (CSD) have much in
common (72). It seems likely that CSD is the animal ho-
molog of migraine aura in humans (53). Some animal stud-
ies indicate that CSD activates the trigeminal system via
unmyelinated A-δ and C-fibers innervating the meninges,
and results in migraine pain (6), although the question of
whether human aura is pain producing is a hotly contested
question (37). Certainly for prolonged aura, a treatment

that would prevent its development or arrest its progres-
sion would be a major development for afflicted patients.

Tonabersat is a CSD inhibitor that has entered clin-
ical trials in migraine. Other potential CSD inhibitors
include (i) σ -receptor (σR1) agonists such as dex-
tromethorphan, carbetapentane, and 4-IBP; (ii) non-
AMPA/KA receptor modulators such as CP-101,606 (a
NR2B antagonist) and ZD9379 (a glycine-site antago-
nist); (ii) K-current modulators such as compound-2
(KCNQ2 opener); (iv) chloride-channel enhancers such
as BTS72664; and (v) connexin hemi-channel modulators
that might block astrocytic calcium waves implicated in
CSD.

Tonabersat (SB-220453) inhibits CSD, CSD-induced NO
release, and cerebral vasodilation (101,120). Tonabersat
does not constrict isolated human blood vessels (75), but
does inhibit trigeminally induced craniovascular effects
(89). Remarkably, topiramate, a proven preventive agent
in migraine (8,17,118), also inhibits CSD in cat and rat
(3). Tonabersat is inactive in the human NO model of mi-
graine (129), as is propranolol (131), although valproate
showed some activity in that model (130). Topiramate
inhibits trigeminal neurons activated by nociceptive in-
tracranial afferents (123), and thus CSD inhibition may
be a model system to contribute to the development of
preventive medicines.

INHIBITION OF VOLTAGE-GATED
CHANNELS

Broadly speaking, inhibition of voltage-gated channels,
particularly Ca2+ channels, has become at attractive tar-
get in migraine after the description of mutations in the
CACNA1A gene in about half of patients with familial
hemiplegic migraine (88). In some responses, this option
links back to CSD (see above) with recent observations
of changes in thresholds for CSD initiation in knockin
mice with P/Q Ca2+ channel mutations (132). Topiramate
(112) and flunarizine (32) clearly interact with Ca2+ flux,
although it must be said immediately that they have other
actions. Indeed, topiramate acts on cellular mechanisms
of phosphorylation thereby (i) blocking voltage-dependent
sodium channels (Nav); (ii) potentiating GABA activity;
and (iii) inhibiting non-NMDA receptor activation, in ad-
dition to (iv) blocking L- and N-channel calcium chan-
nels. Gabapentin and pregabalin are two gabapentinoids
that suppress neuronal excitability by (i) modulating the
non–pore-forming α2δ subunit of the calcium channel and
consequently regulating intracellular calcium influx; and
(ii) influencing glutamate and GABA function, perhaps
through a complex interaction with the amino acid trans-
porters GAT and BGT. Admittedly, the clinical data for the
action of gabapentin in migraine are tenuous. There is
good preclinical evidence for the existence of each of the
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L-, P/Q-, and N-type voltage-gated Ca2+ channels in the
trigeminocervical complex neurons (22,116). They seem to
play a role in CGRP release in dura mater (4) and thus pro-
vide a link and plausibility to their targeting in migraine
therapeutics.

DRUGS THAT ACT ON BRAIN
ENERGY METABOLISM

Magnesium, riboflavin (vitamin B2), and coenzyme Q10
(CoQ10) act on brain energy metabolic pathways and
accordingly influence neuronal excitability. For example,
magnesium plays a role in the oxidative stress response
by modulating the sensitivity of mitochondria to undergo
permeability transition. Also, magnesium influences the
conductance and gating of multiple ion channels including
the NMDA receptor channel. Magnesium can initiate and
propagate CSD. Finally, magnesium regulates the sodium
pump (Na/K ATPase), which plays a pivotal role in the as-
trocytic uptake and clearance of glutamate. The clinical
data on the role of magnesium supplementation have been
conflicting. A recent study suggested that CoQ10 may be
effective in migraine (104).

ANGIOTENSIN SYSTEM MODULATORS

Angiotensin participates in various physiologic functions,
some of which may be relevant to migraine. For example,
angiotensin II constricts blood vessels, increases sympa-
thetic discharge, and causes the release of catecholamine
from the adrenal medulla. Angiotensin II may also modu-
late potassium channels and calcium activity in cells, and
increases the expression of inducible NO synthase (128).
Acting through the angiotensin II type 1 receptors (AT1) in
the brain, angiotensin modulates cerebral blood flow and
helps in regulating autonomic and neuroendocrine func-
tions. AT1 receptors are presynaptic inhibitors of GABA re-
lease. Furthermore, AT1, glutamate, and GABA receptors
are colocalized on medullary neurons of the rostroventro-
medial nuclei, which suggests that they may participate in
nociceptive modulation.

Candesartan is an AT1 inhibitor that may possess an-
timigraine activities by enhancing GABA inhibitory tone
and, perhaps, by reducing glutamate release. The results
of a recent randomized crossover clinical trial indicate
that candesartan is effective in migraine prevention (128).
This proof-of-principle trial calls for further exploration of
these targets in migraine.
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