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◗ Neuroimaging in Trigeminal
Autonomic Cephalgias
Arne May and Peter J. Goadsby

Primary short-lasting headaches broadly divide them-
selves into those associated with prominent cranial auto-
nomic symptoms, so-called trigeminal autonomic cephal-
gias (TACs), and those where autonomic symptoms are
minimal or absent. The group of TACs comprises cluster
headache (CH), paroxysmal hemicrania, and short-lasting
unilateral neuralgiform headache attacks with conjuncti-
val injection and tearing (SUNCT syndrome) (35). The con-
cept of trigeminal autonomic cephalgias underlines a pos-
sibly shared pathophysiologic basis for these syndromes
that is not shared with other primary headaches, such as
migraine or tension-type headache (24). As thus far find-
ings in functional imaging of primary headache syndromes
are specific to the disease (60,54), these techniques may be
helpful in unravelling the degrees of relationship between
clinically analogous headache syndromes.

TACs are relatively rare when compared to migraine or
tension-type headache, which is likely to be why they are
poorly recognized in primary care. The most remarkable
of the clinical features of CH is the striking rhythmicity
or cycling of the attacks and bouts. CH is probably the
most severe pain syndrome known to humans, with fe-
male patients describing each attack as being worse than
childbirth. The syndrome is well defined from a clinical
point of view (35) and despite the fact that it has been
recognized in the literature for more than two centuries
(41), its pathophysiology has been hitherto poorly under-
stood. Neuroimaging has made substantial contributions
in recent times to understanding this relatively rare but
important syndrome best illustrated by the advances in
understanding CH.

THE ISSUE OF VASCULAR VERSUS
NEUROGENIC MECHANISMS

In contrast to migraine, where at least two experimental
models have been developed and tested in clinically rele-

vant settings by pharmacologic means, CH has not been
well studied in experimental animals and developments
have come directly from human studies. A comprehensive
model for CH has to explain the unilateral headache as
well as the sympathetic impairment and parasympathetic
activation. Recent functional imaging data may allow such
a model to be developed.

Despite the large number of investigations in recent
years, the issue of peripheral (e.g., vessel or perivascular in-
flammation) versus central nervous system (e.g., hypotha-
lamic or parasympathetic) mechanisms is still unresolved.
The pathophysiologic concept of vascular headaches is
based on the idea that changes in vessel diameter or gross
changes in cerebral blood flow would trigger pain and thus
explain the mechanism of action of vasoconstrictor drugs,
such as ergotamine (85).

CH specifically has been attributed to an inflammatory
process in the cavernous sinus and tributary veins (33,64).
Inflammation has been thought to obliterate venous out-
flow from the cavernous sinus on one side, thus injuring
the traversing sympathetic fibers of the intracranial in-
ternal carotid artery and its branches. According to this
theory, the active period ends when the inflammation is
suppressed and the sympathetic fibers partially or fully re-
cover. This theory is based substantially on abnormal find-
ings using orbital phlebography in CH patients (31,28,77)
and on the fact that nitroglycerin (NTG) and other va-
sodilators can induce an acute CH attack (13).

However, in a study on CH patients using magnetic
resonance imaging (MRI), no definite pathologic changes
were found in the area of the cavernous (78). Using sin-
gle photon emission computerized tomography (SPECT),
parasellar hyperactivity was present in 50 (episodic) to
80% (chronic) of CH patients and in 70% of migraineurs
(76). Similar findings on orbital phlebography can be
seen in the cavernous region in patients with Tolosa-
Hunt syndrome (29), hemicrania continua (3), SUNCT
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◗ TABLE 90-1 Doppler Studies of Different Headache Types

Author Year Diagnosis Study Population n BFV Changes

Afra et al. (1) 1995 CH Attack/interval 19 ↓
Dahl et al. (10) 1990 CH Attack 25 ↓
Kudrow (46) 1979 CH Attack/interval 26 ↓
Schroth et al. (72) 1983 CH Attack 6 ↑
Shen (75) 1993 CPH Attack 3 ↓
Shen et al. (73) 1993 CH Attack/interval 14 ↓
Shen et al. (74) 1994 SUNCT Interval 4 Ø

BFV = blood flow velocity, CH = cluster headache; CPH = chronic paroxysmal hemicrania; SUNCT =
short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing.

↑ = increase; ↓ = decrease; Ø = no change.

syndrome (32,44), and chronic paroxysmal hemicrania
(3,29), suggesting the changes are not specific for CH.
Moreover, given the circadian rhythmicity of attacks and
cycling of bouts (34,48,47), a purely vasogenic cause can-
not easily explain the entire picture of CH (23). In view
of the striking relapsing–remitting course (48), its sea-
sonal variation (48), and the clockwise regularity (14),
the concept of a central origin of CH needs consideration
(14,45).

HEMODYNAMICS

Transcranial Doppler

Since CH was regarded as a vascular headache and since
CH attacks may be provoked by the vasodilators histamine,
NTG, and alcohol, several Doppler studies have been car-
ried out to examine possible diameter changes in large
intracerebral arteries (Table 90-1). Most studies demon-
strated a bilateral decrease in blood flow velocity (BFV) in
the middle cerebral artery and the anterior cerebral artery
during the attack compared to the headache-free interval
(1,10,46,72,74). Three studies used the elegant combina-
tion of Doppler and blood flow measurement using SPECT.
Dahl et al. (10) and Afra et al. (1) demonstrated a decrease
in BFV during the acute CH attack in frontal arteries but
failed to show any blood flow changes. Gawel et al. (20)
measured CO2 reactivity of the major intracranial vessels
and demonstrated that the CO2 reactivity was significantly
lower during the cluster period, but only in the ipsilateral
anterior cerebral artery to the headache side. Using gal-
lium SPECT, they described in three out of six patients
during the active cluster period a lesion in the region of
the cavernous sinus that faded as the patient moved out
of the active period. They suggested that this finding may
represent the cavernous sinus plexus lesion postulated as
the central defect in CH. In summary, transcranial Doppler
studies have shown decreased velocity in the middle cere-
bral artery after NTG administration and in the acute CH

attack. It was also shown that this vasodilation did not alter
brain blood flow.

Cerebral Blood Flow

Studies of cerebral blood flow in CH are relatively few.
Most have been done with SPECT, and the results of this
semiquantitative method have been quite heterogeneous,
probably due to methodologic differences (Table 90-2),
some reporting an increase (42,65,67,70,84), some a de-
crease (65,84), and some no differences in cortical blood
flow (1,10,37,38,43,63,71). Di Piero and co-workers (12)
studied CH patients out of the active period and normal
volunteers using the cold water pressor test. They demon-
strated changes in pain transmission systems, which bear
more detailed examination. The fact that the alterations
are also present out of the active period of the disease sug-
gested a possible involvement of central tonic pain mech-
anisms in the pathogenesis of CH.

FUNCTIONAL NEUROIMAGING

Positron emission tomography (PET) may represent the
best currently available technique for visualising in vivo
changes in regional cerebral blood flow (rCBF) in humans
when activations in the brain with a relatively long time
constant, such as those in most headache syndromes, are
to be investigated. Modern high-resolution PET scanning
allows the detection of subtle changes in rCBF during de-
fined behavioral tasks and provides an index of synaptic
activity relating networks of regions to tested brain func-
tions (17,18). CH attacks can be elicited with NTG during
the active cluster period without significant side effects
(13). Clinical and experimental data show NTG-provoked
and spontaneous cluster attacks to be comparable (16,22),
and NTG does not alter rCBF significantly (40,43). The
headache can be rapidly and effectively aborted with
sumatriptan. This approach therefore allows detection
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◗ TABLE 90-2 Single Photon Emission Computerized Tomography Studies

in Cluster Headache

Author Year Diagnosis Method n CBV Changes

Afra et al. (1) 1995 CH 99mTC-HMPAO 19 Ø
Dahl et al. (10) 1990 CH 133Xenon 25 Ø
Henry et al. (37) 1978 CH 135Xenon 3 Ø
Hering et al. (38) 1991 CH 99mTC-HMPAO 14 Ø
Kobari et al. (42) 1990 CH 133Xenon 5 ↑
Krabbe et al. (43) 1984 CH 133Xenon 18 Ø
McHenry et al. (62) 1978 CH 133Xenon 3 Ø
Nelson et al. (65) 1980 CH 133Xenon 26 ↑↓
Norris et al. (67) 1976 CH 133Xenon 1 Ø
Sakai et al. (70) 1978 CH 133Xenon 9 ↑
Schlake et al. (71) 1990 CH 99mTC-HMPAO 5 Ø
Wesseling et al. (84) 1989 CH 99mTC-HMPAO 8 ↑↓

CBV = cerebral blood flow; CH = cluster headache. ↑ = increase; ↓ = decrease; Ø = no change.

of brain regions with increased blood flow during NTG-
induced cluster attacks, focusing interest on the hypotha-
lamic region (Table 90-3).

In 1996 the first PET study in CH was reported (40).
The authors investigated only four patients and their find-
ings supported their earlier work (39), suggesting a pref-
erence of the nondominant hemisphere, especially for
the anterior cingulate cortex (ACC), in affective process-
ing of chronic ongoing pain syndromes. These interest-

ing results contribute to understanding central pain trans-
mission systems, but given the small numbers, require
confirmation.

Using PET in a larger patient series, significant acti-
vations ascribable to the acute CH were observed in the
ipsilateral hypothalamic gray matter when compared to
the headache-free state (58). This highly significant acti-
vation was not seen in CH patients out of the bout when
compared to the patients experiencing an acute CH attack

◗ TABLE 90-3 Positron Emission Tomography and Functional Magnetic Resonance

Imaging Studies in Headache

Headache Cingulate
Author Year Type n Cortex Insulae Thalamus Brainstem Hypothalamus

Derbyshire et al. (11) 1994 AFP 6
√ √ √

X X
Hsieh et al. (40) 1996 CH 4

√ √
X X X

Weiller et al. (83) 1995 MO 9
√ √

X
√

X
Bahra et al. (7) 2001 MO 1

√ √ √ √
X

May et al. (60) 1998 Capsaicin 7
√ √ √

X X
May et al. (57) 1998 CH 9

√ √ √
X

√
Sprenger et al. (80) 2004 CH 1

√
X

√ √ √
May et al. (56) 1999 SUNCT syndrome 1 X

√ √
X

√
Sprenger et al. (82) 2005 SUNCT syndrome 1

√ √ √ √ √
Cohen et al. (9) 2004 SUNCT syndrome 2

√
X X X

√
Matharu et al. (52) 2005 HC 7

√ √
Matharu et al. (50) 2004 Chronic migraine 8

√ √ √ √
X

Gutschalk et al. (27) 2002 FHM 1 Local glucose—hypometabolism
Andersson et al. (2) 1997 MA, MO 11 No global blood flow changes
Chabriat et al. (8) 1995 MA, MO 9 No change in 5HT2 receptor distributions
Sachs et al. (69) 1986 MA, MO 4 Reserpine changes glucose metabolism in migraine
Bednarczyk et al. (7) 2002 Healthy subjects 12 Local blood flow changes following nitroglycerine infusion

AFP = atypical facial pain; CH = cluster headache; FHM = familiar hemiplegic migraine; HC = hemicrania continua;
MA = migraine with aura; MO = migraine without aura; SUNCT = short-lasting unilateral neuralgiform headache
attacks with conjunctival injection and tearing. Capsaicin = experimental head pain using capsaicin injection;√ = demonstrated; X = not demonstrated.
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(59). In contrast to migraine (83), no brainstem activa-
tion was found during the acute attack compared to the
resting state. This is remarkable, because migraine and
CH are often discussed as related disorders and identical
specific compounds, such as ergotamine and sumatriptan,
are currently used in the acute treatment of both types of
headache agents (25). These data suggest that while pri-
mary headaches such as migraine and CH may share a
common pain pathway, the trigeminovascular innervation
of intracranial pain-producing structures, the underlying
pathogenesis differs significantly as might be inferred from
the different patterns of presentation and responses to pre-
ventive agents (25).

Just as it is striking that no brainstem activation occurs
in CH in contrast to acute migraine (6,83), no hypotha-
lamic activation was seen in experimental pain induced
by capsaicin injection into the forehead (61). This is im-
portant because injection into the forehead would activate
first-division (ophthalmic) afferents, which are the trigemi-
nal division predominantly responsible for pain activation
in CH. Thus, two other types of first division of trigem-
inal nerve pain, while sharing neuroanatomic pathways
with CH, do not give rise to posterior hypothalamic acti-
vation. This finding clearly implies that the activation spe-
cific to CH is involved in the pain process in a permissive
or triggering manner rather than simply representing a re-
sponse to first-division nociception per se. From the clini-
cal point of view it is tempting to consider a trait change
in the hypothalamus that is converted to a state change
when the patient is in the acute bout. Furthermore, given
that this area is involved in circadian rhythm and sleep–
wake cycling (63,66), these data establish an involvement
of this hypothalamic area as a primum movens in the acute
cluster attack.

MORPHOMETRIC STUDIES: POINTING
TOWARD A LESION

Fundamental to the concept of idiopathic or primary
headache, including migraine, tension-type headache, and
CH, is the currently accepted view that these conditions
are due to abnormal brain function with completely nor-
mal brain structure (35,36). Given the consistency of the
PET findings with the clinical presentation in CH, the sub-
sequent question is whether the brain of such patients is
structurally normal. Voxel-based morphometry, an objec-
tive and automated method of analyzing changes in brain
structure (4,5,26), was used to study the structure of the
brains of patients with CH (55).

Using the voxel-based morphometric analysis of the
structural T1-weighted MRI scans, a significant structural
difference in gray matter density was found in patients
with CH when compared to healthy volunteers. This dif-
ference consists of an increase in volume and was present

for the entire cohort. The difference was also present when
patients in and outside a bout were compared with the
control group. This structural difference is bilaterally sit-
uated in the diencephalon, adjacent to the third ventricle
and rostral to the aqueduct, coinciding with the inferior
posterior hypothalamus. In terms of the stereotaxic co-
ordinates (15), it is virtually the identical area in which
activation during an acute CH attack is demonstrated in
the PET study. No other areas of change were noted (55).
Interestingly, in migraine, no global or regional structural
changes were found (53). It may be that, in contrast to
CH, migraine is a purely functional disease or that, more
likely, migraine is a too heterogeneous disease to allow us
to delineate subtle structural changes using the method of
voxel-based morphometry.

Colocalization of morphometric and functional
changes in CH means that two different imaging tech-
niques separately identify a highly specific brain area
previously considered on clinical and biologic grounds
to be involved in the genesis of the CH syndrome (49).
The structural data relate to a morphometric change of
the neuronal density in this region while the functional
imaging data are related to the neuronal activity in this
area. Together they demonstrate for the first time the
precise anatomic location for the central nervous system
lesion of CH.

TRIGEMINAL AUTONOMIC
HEADACHES: SHARED
PATHOPHYSIOLOGIC BACKGROUND?

If it is correct that trigeminal autonomic cephalgias share
a common pathophysiologic background, it should be pos-
sible to delineate similar structures using functional imag-
ing. SUNCT is among the rarest idiopathic headache syn-
dromes (79). Several clinical features differentiate it from
other primary headaches, such as CH and chronic parox-
ysmal hemicrania (CPH), with the most prominent one
being that the paroxysms of the unilateral pain are very
short lasting, between 5 and 250 seconds. The attacks are
frequent, with a published mean of 30 attacks per day and
a range of 6 to 77 attacks per day (68). The pain is accompa-
nied by autonomic features such as conjunctival injection
and tearing.

Little is known about its pathophysiology, although
the trigeminal pathways seem to be involved in the en-
tire range of the idiopathic headaches, and the trigemi-
nal autonomic reflex has been suggested to account for
many of its features (24). Even though there are marked
differences in the clinical pictures, such as the frequency
and duration of attacks and the different approach to
treatment, many of the basic features of SUNCT, such
as episodicity, autonomic symptoms, and unilaterality,
are shared by other headache types, such as CH and
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CPH. This suggests a pathophysiologic similarity to these
syndromes and prompted the suggestion to unify them
on clinical grounds as trigeminal autonomic cephalgias
(TACs) (24).

Using functional MRI in six consecutive spontaneous
pain attacks in a patient with SUNCT, activation was seen
in the ipsilateral inferior posterior hypothalamic gray mat-
ter when comparing the pain attacks with the resting state
(57). These findings have recently been confirmed (82). The
activation in the hypothalamus was seen solely in the pain
state and was in the same area that was demonstrated to
be activated in CH patients (58), suggesting considerable
commonalities between SUNCT and CH. Indeed, the data
may explain the episodic nature of the pain. Furthermore,
a recent case report investigated, using functional MRI, a
68-year-old patient suffering from excruciating trigeminal
autonomic headache attacks, in whom frequency, dura-
tion, and therapeutic response allowed no clear-cut classi-
fication to one of the subtypes of TAC (81). However, the
cerebral activation pattern was similar, although not iden-
tical, to those previously observed in CH (56) and SUNCT
(57), with a prominent activation in the hypothalamic gray
matter (81). This case study underlines the conceptual
value of the term “TAC” for the group of headaches fo-
cusing around the trigeminal autonomic reflex and more-
over emphasizes the importance of the hypothalamus
as a key region in the pathophysiologic process of this
entity.

Another recent case report of two SUNCT patients in-
vestigated using functional MRI and blood oxygen level
dependent (BOLD) reported a bilateral hypothalamic acti-
vation, which even positively correlated to increasing pain
levels (9). This report certainly strengthens the role of the
hypothalamus in the pathophysiology of TACs, but con-
sidering that only two patients were reported, it probably
does not justify questioning the basis for the laterality of
the attacks.

Hemicrania continua is a strictly unilateral, continu-
ous headache of moderate intensity, with superimposed
exacerbations of severe intensity that are accompanied
by trigeminal autonomic features and migrainous symp-
toms (51). The syndrome is exquisitely responsive to in-
domethacin. In seven patients with hemicrania continua,
a significant activation of the contralateral posterior hy-
pothalamus and ipsilateral dorsal–rostral pons in associa-
tion with the headache was described. In addition, there
was activation of the ipsilateral ventrolateral midbrain,
which extended over the red nucleus and the substantia
nigra, and of the bilateral pontomedullary junction. This
study demonstrated nicely that the neuroimaging markers
of trigeminal autonomic headaches and migrainous syn-
dromes are demonstrated in hemicrania continua, mirror-
ing the clinical phenotype, which in fact exhibits a cer-
tain overlap with trigeminal autonomic headaches and
migraine (52). Taken together, just as in the case of an

atypical trigeminal autonomic headache (81), the func-
tional imaging data in hemicrania continua (52) impres-
sively emphasizes that primary headache syndromes can
be distinguished on a functional neuroanatomic basis by
areas of activation specific to the clinical presentation.

VESSELS

Using PET, an activation pattern clearly outside the brain
parenchyma was observed bilaterally in midline structures
over several planes (from –32 mm to –20 mm with respect
to the anterior commissure–posterior commissure line
(ACPC line), anterior to the brainstem and posterior to the
region of the optic chiasm region. Superimposed on an
MRI template, the location of the activation corresponded
to the intracranial arteries bilaterally and the region of
the cavernous sinus (58,61). This holds true in two group
studies, as well as in 15 out of 17 single subject analyses.
Bilateral activation in this region might be an indication
of increased venous inflow from the superior ophthalmic
vein draining the ophthalmic artery. Another possibility is
that the observed increase in activation might be due to bi-
lateral dilation of the internal carotid artery. Spontaneous
and glyceryl trinitrate (nitroglycerin)–provoked attacks
are reported to be accompanied by a bilateral decrease
in middle cerebral artery blood flow velocities, implying
vasodilation (10). It is difficult to assess the contribution
of these two sources to the activation, particularly since it
is beyond the spatial resolution of scanning to distinguish
venous from arterial vessels in the cavernous sinus.
However, using magnetic resonance angiography (MRA)
and the same experimental design as in the PET study, it
was demonstrated that there was dilation of the basilar
artery and both internal carotid arteries compared to
the headache-free rest state (56). Using PET, significant
activity in the region of the cavernous sinus was previously
described in CH patients (40). However, given that we have
observed vasodilation in large vessels after capsaicin in-
jection to the forehead, again in a PET study (61) in a con-
dition without the influence of a systemic vasodilator and
without the pathophysiologic background of CH, it seems
likely that the vascular changes are an epiphenomenon of
activation of the trigeminovascular system (21). In healthy
controls, a pain-provoking application of capsaicin to the
nasal mucosa induced vasodilation in the internal carotid,
whereas middle cerebral arteries and the basilar artery
were narrowed (19). On this background our data raise the
possibility that vasodilation, increase in flow, or both in the
cavernous region is not specific for CH, or does not form a
significant part of the pathophysiology of the acute attack
of CH. Our data suggest that activation of the trigeminal
system as such is sufficient to trigger vasodilation of these
vessels.
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CONCLUSION

Neuroimaging of primary headache syndromes, such as
CH and migraine, has begun to provide a better under-
standing of the neuroanatomic and physiologic basis of
the conditions. Although these headache types have been
widely described as vascular, due to advanced methods
such as PET, functional MRI, and voxel-based morphom-
etry, vascular changes are no longer seen as the primary
cause for head pain. The shared anatomic and physiologic
substrate for migraine and CH is the neural innervation of
the cranial circulation. Functional imaging with PET has
shed light on the genesis of both syndromes, documenting
activation in the midbrain and pons in migraine and in
the hypothalamic gray matter in CH. Furthermore, using
the voxel-based morphometric analysis of the structural
T1-weighted MRI scans, a significant structural difference
in gray matter density of the hypothalamus was found in
patients with CH when compared to healthy volunteers.
These areas are involved not simply as a response to first-
division nociceptive pain impulses, but are also inherent to
each syndrome, probably in some permissive or dysfunc-
tional role.

In addition to activation within the brain, there was a
highly significant activation observed in the region of ma-
jor vessels. This phenomenon was seen in CH as well as
experimental trigeminal transmitted pain using capsaicin
injections into the forehead. MRA demonstrated dilation
in both the basilar and intracranial carotid arteries, clar-
ifying the nature of the changes observed in headache
that are most likely inherent to the trigeminovascular
system.

Taking these new data in acute CH together with what
has been observed in experimental head pain and mi-
graine, the data establish that migraine and CH, far from
being primarily vascular disorders, are conditions whose
genesis is to be found in the central nervous system in
pacemaker or circadian regions specific to the syndrome.
If further studies confirm these findings, a better under-
standing will be gained of where and how acute and pre-
ventive therapy can be targeted.
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