Hypnic Headaches

Lawrence C. Newman and Amnon Mosek

HYPNIC HEADACHES

International Headache Society (IHS) code and diagnosis: 4.5 Hypnic headache

World Health Organization (WHO) Code: G44.80

Short description: Hypnic headache (HH) is a rare, recurrent, sleep-related, primary headache disorder. It usually begins after 50 years of age. The attack occurs at night when sleeping, waking the patient with a mild to moderate headache, severe in more than 20% of patients. Pain is bilateral in about two-thirds of cases. The attack usually lasts from 15 to 180 minutes, but longer durations have been described. Caffeine and lithium have been effective treatments in several reported cases. The pathophysiology of HH is unknown, but there is some evidence that it is related to rapid eye movement (REM) sleep.

Previously used terms: Hypnic headache syndrome, “alarm clock” headache

EPIDEMIOLOGY

Raskin first described hypnic headache in 1988 (35). Since then, more than 90 cases were reported in the literature (1–3,5–9,11–14,17–19,22–28,30–33,35–37,40–44). In the largest case study HH was diagnosed in 0.07% of all headache patients assessed annually at a specialty clinic (7). Although this is an estimated approximation of the true prevalence, it reflects the rarity of this syndrome.

PATHOPHYSIOLOGY

The exact pathophysiologic mechanisms of HH have not yet been elucidated. It has been postulated that HH may be the result of a chronobiologic disorder, serotonin and melatonin dysregulation, or a disturbance of REM sleep (5,8,9,17,31,33,37,38).

Raskin hypothesized that HH results from a disturbance of the mammalian biologic pacemaker of the brain residing within the suprachiasmatic nuclei (SCN) (34). Dysfunction of this “biologic clock,” which generates circadian rhythms, has been linked to other phasic disorders such as bipolar illness, cluster headaches, and jet lag (34). A disturbance of the regulating system of the SCN could account for the clocklike regularity of headaches in HH.

Neuronal pathways exist between the SCN and the pain-modulating systems of the midbrain periaqueductal gray matter and dorsal raphe nuclei. These pathways and the mammalian biologic pacemaker are serotonergically modulated. Lithium carbonate, the agent most frequently reported to successfully treat this disorder, affects serotonin metabolism by downregulating serotonin receptors, thereby increasing serotonin release (39).

Dysregulation of melatonin has also been suggested as a putative mechanism of the syndrome. Melatonin is the main product of the pineal gland and is a marker of circadian rhythm. Melatonin modulates many neurobiologic functions such as cerebral vascular tone, serotonin neurotransmission, and inhibition of prostaglandin E2 synthesis (17). With age, there is a decrease in the activity of the hypothalamic-pineal axis with a subsequent diminution of nocturnal secretion of melatonin. Lithium indirectly causes a rise in nocturnal melatonin levels by increasing serotonin production and tryptophan absorption, both melatonin precursors (4,20,21). Furthermore, melatonin therapy has been reported to abolish attacks in some patients with HH (5,8).

In that the headaches of HH occur exclusively during sleep, often during a dream, several investigators have postulated that the syndrome is a disorder of REM sleep. REM sleep is associated with decreased levels of serotonin, increases in cerebral blood flow, and dramatic reductions in the activity of the neurons within the dorsal raphe and locus ceruleus (37), an ideal setting for headache occurrence. In most patients with HH who underwent polysomnographic studies, attacks were associated with REM sleep.
848 **Tension-Type Headaches, Cluster Headaches, and Other Primary Headaches**

(5,9,31); however, non-REM-related headaches have also recently been reported (22,41).

It is probable, given the differences in medication response and in polysomnographic studies, that more than one pathophysiologic mechanism is responsible for HH. Further investigations using sleep studies and functional neuroimaging may help to better elucidate the mechanisms of HH.

CLINICAL FEATURES

IHS diagnostic criteria (Revised International Classification of Headache Disorders, 2004 ICHD-II) (16):

A. Dull headache fulfilling criteria B through D

B. Develops only during sleep and awakens the patient

C. At least two of the following characteristics:

1. Occurs ≥15 times per month
2. Lasts ≥15 minutes after waking
3. First occurs after the age of 50 years

D. No autonomic symptoms and no more than one of nausea, photophobia, or phonophobia

E. Not attributed to another disorder (i.e., intracranial disorders must be excluded. Distinction from trigeminal autonomic cephalalgias is necessary for effective management).

The onset of HH is usually late in life with a mean age at onset of 61 ± 10 years (range 30 to 83 years). A report of a 9-year-old girl with probable HH has been reported, although the headache frequency and age of onset did not meet IHS criteria (15). The average duration of the headache prior to diagnosis was 5 ± 8 years. The condition is more prevalent in women (65%) than in men.

The main characteristic of HH is that the pain awakens the patients during their sleep. The pain awakened 65% of the patients at a constant time interval during the night (hence, previously called “alarm clock” headache). Few patients (10%) reported that an identical headache might awaken them also during a daytime nap. The pertinent clinical characteristics of HH are summarized in Table 101-1.

The pain in HH is usually located anteriorly and less often involves the lateral aspects of the head, or is felt as a diffuse headache. On occasion it involves the occiput or radiates into the neck.

The duration of an untreated attack varies among patients and in between attacks. Usually the pain resolves within 1 to 2 hours (range 15 to 180 minutes), but longer attacks of up to 10 hours have been reported. The frequency of the attacks is high. More than four attacks per week occurred in 70% of the cases and about half of them had daily attacks (range one per week to six per night).

TABLE 101-1 Demographics and Clinical Characteristics of Patients With Hypnic Headache (n = 52)*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>56 (69%)</td>
</tr>
<tr>
<td>M</td>
<td>30 (39%)</td>
</tr>
<tr>
<td>Age at onset (years)</td>
<td>61 ± 10</td>
</tr>
<tr>
<td>Pain onset (hours after falling asleep)</td>
<td></td>
</tr>
<tr>
<td>Within first 2</td>
<td>9 (13%)</td>
</tr>
<tr>
<td>2-4</td>
<td>50 (71%)</td>
</tr>
<tr>
<td>4 or more</td>
<td>1 (13%)</td>
</tr>
<tr>
<td>Intensity of pain</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>34 (56%)</td>
</tr>
<tr>
<td>Severe</td>
<td>24 (39%)</td>
</tr>
<tr>
<td>Character of pain</td>
<td></td>
</tr>
<tr>
<td>Dull/pressure</td>
<td>48 (75%)</td>
</tr>
<tr>
<td>Throbbing/pulsating</td>
<td>20 (46%)</td>
</tr>
<tr>
<td>Sharp/stabbing</td>
<td>4 (9%)</td>
</tr>
<tr>
<td>Side of the pain</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>34 (38%)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>56 (62%)</td>
</tr>
<tr>
<td>Associated features</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>15 (21%)</td>
</tr>
<tr>
<td>Photo- or phonophobia</td>
<td>11 (15%)</td>
</tr>
<tr>
<td>Lacrimation</td>
<td>4 (9%)</td>
</tr>
<tr>
<td>Ptosis</td>
<td>2 (2%)</td>
</tr>
</tbody>
</table>

*Not all data were available for every patient.

Autonomic phenomena do not seem to be a component of HH and their presence exclude the diagnosis of HH (16).

Although most of the patients tend to sit up in bed or got out of bed during the attack, only seven report that an upright position alleviated the pain. No triggers were identified as being capable of provoking HH. One patient reported that the headache started after a minor blow to the head; three patients considered alcohol as a trigger for HH attacks, while 19 patients did not.

A history of past headache has no influence on the development of HH. Out of 41 cases that provided past headache history, 23 (56%) had past headaches. These consisted of migraine (12 patients, 3 with aura), tension-type headache (6 patients), chronic daily headache (2 patients), cervicogenic headache (2 patients), and nonspecific hemicrania (1 patient).

The diagnosis of HH relies on the typical clinical features and the exclusion of an attributing disorder, particularly in cases with new-onset headache. Migraine and the trigeminal autonomic cephalalgias that might be related to sleep need to be excluded. As a primary headache, the neurologic examination and laboratory and imaging studies tend not to be revealing. Among 83 cases diagnosed with HH, computed tomography scan or magnetic resonance
imaging (MRI) of the brain showed nonspecific white mat-
ter changes (two patients), vascular lacunar lesions (six pa-
tients), mild brain atrophy (three patients), or an inciden-
tal finding of meningioma (two patients). The relevance of
these findings to HH is unclear and it might be a common
result of investigations of this age group. Doppler ultra-
sound, electroencephalography, or neurophysiologic stud-
ies are normal.

Two reports of probable secondary HH have been de-
scribed (10,29). In one, the patient had a 9-month history of
typical HH, but also reported brief episodes of giddiness.
A brain MRI revealed a large posterior-fossa meningioma.
Its removal brought complete resolution of the headache
(29). In the second report, HH-like headaches occurred in
the setting of intracranial hypotension from an idiopathic
cerebrospinal fluid leak. Headaches remitted following a
spinal blood patch (10).

TREATMENT

Lithium was the first, and remains the most indicated,
treatment for HH (8). Treatment is usually initiated with
lithium carbonate 300 mg at bedtime and can be increased
to 600 mg at bedtime within a week. Renal and thyroid
function should be assessed prior to initiating therapy
and periodically during treatment. Lithium serum con-
centrations should be monitored as well to avoid toxicity.
Side effects include tremor, diarrhea, increased thirst, and
polyuria. Although lithium has higher efficacy rates than
other medications, it is often poorly tolerated, especially by el-
derly patients, those most likely to be afflicted with this
disorder. By reassuring the patients of the benign nature of
the attacks, some will choose to delay the usage of med-
ications at all (7). Other agents that have been reported
to effectively treat HH include bedime doses of caffeine
(40- to 60-mg tablet, or as a cup of coffee, or during the
75 mg (6,8,17,18). Indomethacin appears to be of utility in
pain) (7,8), flunarizine 5 mg (8,25), and indomethacin 25 to
(40- to 60-mg tablet, or as a cup of coffee, or during the
75 mg (6,8,17,18). Indomethacin appears to be of utility in
pain) (7,8), flunarizine 5 mg (8,25), and indomethacin 25 to
(40- to 60-mg tablet, or as a cup of coffee, or during the
75 mg (6,8,17,18). Indomethacin appears to be of utility in
pain) (7,8), flunarizine 5 mg (8,25), and indomethacin 25 to
(40- to 60-mg tablet, or as a cup of coffee, or during the
75 mg (6,8,17,18). Indomethacin appears to be of utility in
pain) (7,8), flunarizine 5 mg (8,25), and indomethacin 25 to
(40- to 60-mg tablet, or as a cup of coffee, or during the
75 mg (6,8,17,18). Indomethacin appears to be of utility in
pain) (7,8), flunarizine 5 mg (8,25), and indomethacin 25 to
(40- to 60-mg tablet, or as a cup of coffee, or during the
75 mg (6,8,17,18). Indomethacin appears to be of utility in
pain) (7,8), flunarizine 5 mg (8,25), and indomethacin 25 to

REFERENCES

2. Capo G, Esposito A. Hypnic headache: a new Italian case with a
3. Centonze V, D’Amico D, Uso S, et al. First Italian case of hypnic
headache, with literature review and discussion of nosology. Cepha-
4. Chazot G, Coulastrat B, Brun J, Zaidan R. Effects of the patterns of
melatonin and cortisol in cluster headache of a single administration of
lithium at 7:00 p.m. daily over one week: a preliminary report.
Pharmacopsychiatry 1987;20:222–223.
5. Dodick DW, Capobianco DJ. Drug-responsive headache syndrome.
6. Dodick DW, Jones JM, Capobianco DJ. Hypnic headache: another
7. Dodick DW, Mosak AC, Campbell JK. The hypnic (“alarm clock”)
8. Evers S, Galzba PJ. Hypnic headache: clinical features, pathophys-
German cases including polysomnography. Cephalalgia 2003;23:20–
23.
10. Freeman WD, Brands PK, Capobianco DJ, Lamet T. Hypnic headache
11. Goadsby PJ, Lipton RB. A review of paroxysmal hemiconius, SUNCT
syndrome and other short-lasting headaches with autonomic feature,
of hypnic headache and mini-review of the literature. J Neurol
Cephalalgia 1997;17:310.
15. Grossberg BM, Lipton RB, Solomon S, Ballahan-Gill K. Hypnic
16. Headache Classification Subcommittee of the International Head-
ache Society. The international classification of headache disorders,
17. Ivanez V, Soler R, Barreiro P. Hypnic headache syndrome: a case
18. Jones JM, Dodick DW. Hypnic headache: another indomethacin re-
and cortisol plasma levels in relation to timing of cluster headache.
21. Lewis AJ, Kerestes NA, Feuer G. Neuropharmacology of pineal secre-
23. Martins IP, Gouveia IRG. Hypnic headache and travel across time
25. Moralez-Ain F, Manni R, Inozcure C, et al. The hypnic headache syn-
26. Newman LC, Lipton RB, Solomon S. The hypnic headache syndrome:
a benign headache disorder of the elderly. Neurology 1990;40:1904–
1905.
In: Clifford Rose F, ed. New advances in headache research,
29. Peatfield RC, Mendoza ND. Posterior fossa meningioma presenting
31. Pinto L, Raimondi I, Cicinelli K, et al. Hypnic headache syndrome:
association of the attacks with REM sleep. Cephalalgia 2003;23:150–
154.
32. Pinto CA, Fragoso YD, Souza Carvalho D, Guilhau AA. Hypnic head-
ache syndrome: clinical aspects of eight patients in Brazil. Cepha-
33. Quatres-Cor L, Codina M. The hypnic headache syndrome—a case report.
Cephalalgia 1997;17:303.
850 Tension-Type Headaches, Cluster Headaches, and Other Primary Headaches