

# BACKGROUND

Despite various medical options, many patients with migraine experience limited improvement.

Interventional approaches like occipital nerve stimulation (ONS) and occipital surgical decompression (OSD) are gaining attention as potential options for patients refractory to medical therapy.

# OBJECTIVES

We conducted a systematic review to evaluate the efficacy and safety of ONS and OSD for the treatment of migraine.

# METHODS

We performed a comprehensive search from various databases from Jan 1990- May 2021 using keywords including occipital nerve surgery, occipital nerve stimulation, and migraine.

Studies were included if mean change in headache frequency, intensity, and complication rate were reported. Studies were excluded if indications were not migraine and if interventions were not in the occipital region.

# RESULTS

A total of 29 studies comprising 1378 patients with migraine with mean age of 45.81 years were included.

19 and 10 studies reported the efficacy and safety of ONS and OSD, respectively, with most studies demonstrating improvement of headache frequency and headache intensity.

The ONS group included six randomized controlled trials, and none of the OSD studies included a controlled group.

# Efficacy and Safety of Occipital Nerve Stimulation and Occipital Surgical Decompression for Migraine - A Systematic Review

### Adnan H Shahid MBBS MCh<sup>1</sup>, Mehdi Abbasi MD<sup>1</sup>, Jorge L Arturo Larco MD<sup>1</sup>, Yang Liu Ph D<sup>1</sup>, Sarosh Irfan Madhani MD<sup>1</sup>. Carrie E. Robertson, MD<sup>2</sup>, Luis Savastano, MD<sup>1</sup>, Chia-Chun Chiang, MD<sup>2</sup>

# FIGURE AND TABLES



Department of Neurosurgery <sup>1</sup> and Neurology <sup>2</sup>, Mayo Clinic, Rochester MN

| Study design  | Sample | Age (mean) | Female | Intervention | Follow up | Risk of bias |
|---------------|--------|------------|--------|--------------|-----------|--------------|
| prospective   | 32     | 45.77      | 25.00  | ONS          | 11.5      | High         |
| prospective   | 112    | 45.9       | 79.00  | ONS          | 3         | High         |
| retrospective | 4/60   | 58         | NA     | ONS          | 12        | High         |
| retrospective | 12     | 46         | 9.00   | ONS          | 10.1      | Moderate     |
| prospective   | 37     | 46.9       | 33.00  | ONS          | 112.8     | Low          |
| RCT           | 22     | 37.5       | 18.00  | ONS          | 1         | Moderate     |
| RCT           | 14     | NA         | NA     | ONS          | 3         | Low          |
| prospective   | 35/53  | NA         | NA     | ONS          | 39        | Moderate     |
| RCT           | 157    | 44.9       | 124.00 | ONS          | 13        | Low          |
| RCT           | 8      | NA         | NA     | ONS          | 0.25      | Moderate     |
| case series   | 8      | 45.5       | 8.00   | ONS          | 3         | Low          |
| RCT           | 54     | 41         | 48.00  | ONS          | 1         | Moderate     |
| case series   | 17     | 51.12      | 15.00  | ONS          | 12        | Moderate     |
| retrospective | 17/25  | 49         | 18.00  | ONS          | 36        | High         |
| retrospective | 10     | 46.5       | 8.00   | ONS          | 33        | High         |
| RCT           | 28     | 41         | 22.00  | ONS          | 3         | Moderate     |
|               |        |            |        |              |           |              |

|     | Study design  | Sample | Age (mean) | Female | Intervention | Follow up | Risk of bias |
|-----|---------------|--------|------------|--------|--------------|-----------|--------------|
|     | retrospective | 47     | NA         | NA     | OSD          | 8         | High         |
|     | retrospective | 78     | NA         | NA     | OSD          | 21        | High         |
|     | retrospective | 14     | NA         | NA     | OSD          | 44.04     | High         |
|     | prospective   | 9      | 51.3       | 8.00   | OSD5         | 2         | Moderate     |
|     | retrospective | 21     | NA         | NA     | OSD          | 12        | High         |
| )15 | retrospective | 194    | 44.33      | 169.00 | OSD          | NA        | High         |
| 015 | retrospective | 282    | 44.64      | 247.00 | OSD          | NA        | High         |
|     | retrospective | 111    | 44.7       | 96.00  | OSD          | 6         | Moderate     |
|     | retrospective | 118    | 45.3       | 103.00 | OSD          | 6         | Moderate     |
|     | retrospective | 55     | 45.9       | 49.00  | OSD          | 18        | Moderate     |
|     | retrospective | 206    | 45         | 168.00 | OSD          | 12        | Moderate     |
|     | prospective   | 11     | 47.9       | NA     | OSD          | 12        | Moderate     |
|     |               |        |            |        |              |           |              |

### RESULTS

**ONS-** The pre-treatment headache intensity ranged from  $7.4 \pm 1.6 - 9.8 \pm 0.7$  which improved to  $2.0 \pm 1.22 - 9.0 \pm 1.0$ . Headache frequency ranged from  $8.25\pm2.04 - 29.37\pm18.3$ pre-treatment and improved to  $3.0\pm4.06 - 26.23\pm8.26$ post-treatment. Significant improvement of headache with more than 50% change in frequency or intensity was in the range of 8.33%-100%. Complications were reported in 13 out of 19 studies, with lead migration being a common issue (up to 10.8% -70%)

**OSD-** The pre-treatment headache intensity ranged from  $6.5 \pm 2.0$  -  $9.2 \pm 1.0$ , which improved to  $2.6 \pm 2.5 - 4.7 \pm 3.1$ post-treatment. Headache frequency improved from  $9.5\pm5.4 - 18.5\pm10.4$  pre-treatment to  $3.7\pm6.0 - 9.9 \pm 9.8$ post-treatment. Significant improvement of headache was reported in the range of 71.4%-94.9%.

Six out of ten studies reported data on complication. Paresthesia was the most common post-treatment complication (9.5%-88.7%).

# DISCUSSION

We attempted a meta-analysis. However, probable selection bias, a lack of control groups in most studies, and the heterogeneity of outcome measurements precluded formal meta-analysis.

Future studies should utilize commonly accepted standardized outcome measures, including headache frequency, headache intensity, and complications.

### CONCLUSION

**Despite the fact that most studies reported improvement in** headache frequency and intensity in patients with migraine, the variability in outcome measures and the moderate-to-high risk of bias, especially in the OSD group were major limitations

RCT with well-defined, objective-based More standardized endpoints including descriptive adverse reporting is warranted.