

Eptinezumab reduced disease burden in chronic migraine and medication-overuse headache in patients also receiving patient education: Results from the placebo-controlled RESOLUTION trial

Stewart J. Tepper,¹ Henrik W. Schytz,² Rigmor H. Jensen,² Christofer Lundqvist,^{3,4} Gisela M. Terwindt,⁵ Cristina Tassorelli,^{6,7} Fabrizio Vernieri,^{8,9} Michel Lantéri-Minet,^{10,11} Andrew Blumenfeld,¹² Mette Krog Jøsiasen,¹³ Gary Jansson,¹³ Anders Ettrup,¹³ Aurélia Mittoux,¹³ Richard B. Lipton¹⁴

¹The New England Institute for Neurology and Headache, Stamford, CT, United States; ²Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark; ³Departments of Neurology and Health Services Research, Akershus University Hospital, Lørenskog, Norway; ⁴Institute of Clinical Medicine, University of Oslo, Oslo, Norway; ⁵Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands; ⁶Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; ⁷IRCCS C. Mondino Foundation, Pavia, Italy; ⁸Unit of Headache and Neurosonology, Fondazione Policlinico Campus Bio-Medico, Rome, Italy; ⁹Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy; ¹⁰Pain Department and FHU InovPain, Centre Hospitalier Universitaire de Nice, Nice, France; ¹¹INSERM U1107 Migraine and Trigeminal Pain, Auvergne University, Clermont-Ferrand, France; ¹²The Los Angeles Headache Center, Los Angeles, CA, United States; ¹³H. Lundbeck A/S, Copenhagen, Denmark; ¹⁴Department of Neurology, Albert Einstein College of Medicine, New York, NY, United States

These data from secondary outcomes show a greater impact of eptinezumab treatment vs placebo across several patient-reported outcomes measuring disease burden and health-related quality of life in adults with chronic migraine and medication-overuse headache who also received a brief educational intervention prior to dosing.

Background

- Medication-overuse headache (MOH) is a highly disabling and prevalent disorder occurring in ~60 million people worldwide, of which many are diagnosed with chronic migraine (CM), and can contribute to several negative outcomes for an individual.^{1,4}
- MOH is diagnosed when a person with an existing headache disorder develops a new or worsened headache in association with medication overuse.³
- Currently, European guidelines recommend education about MOH as the primary treatment approach,⁵ but multiple clinical approaches are used to treat MOH—patient education, preventive treatment alone, withdrawal from the overused medication alone, and combined medication withdrawal and preventive therapy.^{1,7}
- Eptinezumab is an intravenously administered, high-affinity anti-CGRP (calcitonin gene-related peptide) monoclonal antibody approved for migraine prevention,⁶ offering full bioavailability by the end of the infusion and rapid CGRP inhibition.
- The RESOLUTION trial assessed the efficacy and safety of eptinezumab vs placebo when given in addition to patient education in participants with CM and MOH.⁹
- The trial met its primary and all key secondary endpoints.

Objective

- To evaluate the impact of eptinezumab vs placebo on patient-reported outcomes measuring headache-related burden, migraine-related disability, work productivity and activity impairment, health-related quality of life, and treatment satisfaction in adults with CM and MOH who also received a brief educational intervention (BEI).

Methods

- RESOLUTION was a multinational, double-blind, randomized, placebo-controlled phase 4 trial (ClinicalTrials.gov: NCT05452239).⁹
- The trial comprised a 4-week screening period; 12-week, double-blind, placebo-controlled period; 12-week, open-label, extension period; and 8-week, safety follow-up period.
- Eligible adults (18–75 years) were diagnosed with CM and MOH (excluding opioid-overuse headache) and had ≥15 monthly headache days (MHDs), ≥8 monthly migraine days (MMDs), and regular overuse of acute medication (use on ≥10 or ≥15 days per month, depending on class of acute treatment⁸) during the 3 months prior to screening and during the screening period.
- At the end of the screening period, eligible participants entered the placebo-controlled period and were randomized (1:1) to infusion with eptinezumab 100 mg or placebo, with all participants receiving an ~10-minute standardized BEI about MOH (semi-structured educational conversation)^{10,11} prior to the first infusion (i.e., at the baseline visit).
- After the placebo-controlled period, all participants entered a 12-week open-label period in which they received eptinezumab 100 mg.
- Patient-reported outcome questionnaires were captured at prespecified time points using a self-reported electronic diary.
- Prespecified patient-reported outcome endpoints included:
 - Patient Global Impression of Change (PGIC) (quantifies overall impression of change in disease status; lower scores are better); score at Weeks 4 and 12
 - 6-item Headache Impact Test (HIT-6) (quantifies headache-related life impact; lower scores are better); change from baseline to Weeks 4 and 12 in total score
 - modified Migraine Disability Assessment (mMIDAS) (quantifies migraine-related disability; lower scores are better); change from baseline to Weeks 4 and 12 in total score
 - Migraine-specific Work Productivity and Activity Impairment questionnaire (WPAI:M) (quantifies migraine-related impairment in workplace productivity and everyday activities; lower scores are better); change from baseline to Weeks 4 and 12 in each domain score
 - EQ-5D visual analogue scale (EQ-5D VAS) (quantifies overall health-related quality of life; higher scores are better); change from baseline to Weeks 4 and 12 in score
 - Hospital Anxiety and Depression Scale (HADS) (quantifies the level of anxiety and depression; lower scores are better); change from baseline to Weeks 4 and 12 in each domain score
 - 9-item Treatment Satisfaction Questionnaire for Medicine (TSQM-9) (quantifies patient satisfaction with the trial medication; higher scores are better); score at Weeks 4 and 12 in each domain
- Data were analyzed in the full analysis set (all randomized participants who received an infusion of eptinezumab or placebo in the placebo-controlled period, and who had a valid baseline assessment and at least one valid post-baseline 4-week assessment of MMDs across Weeks 1–12).
- All p-values comparing eptinezumab and placebo are descriptive and not adjusted for multiplicity.

Results

- Of 608 participants randomized, 596 (98.0%) completed the placebo-controlled period.
- Mean baseline scores (e.g., HIT-6 and mMIDAS total scores) were indicative of moderate to severe disease-related burden and poor health-related quality of life (Figure 1).
- Eptinezumab with BEI was associated with better (lower) PGIC scores than placebo with BEI at Week 4 ($p<0.0001$) and Week 12 ($p<0.0001$) (Figure 2).
- The eptinezumab arm was associated with greater improvements in HIT-6 total scores vs the placebo arm at Week 4 and Week 12 ($p<0.0001$, both comparisons) (Figure 2), with a clinically meaningful change from baseline in mean score with eptinezumab (i.e., >5-point improvement).^{11,12}
- The mMIDAS total score improved more with the eptinezumab arm than with the placebo arm at Week 4 ($p<0.0001$), which was sustained at Week 12 ($p=0.0006$) (Figure 2), with a clinically meaningful change from baseline in mean score with eptinezumab (i.e., >30% improvement).¹³
- The eptinezumab arm was more favorable than the placebo arm for improving WPAI:M work productivity loss (Figure 3) and other WPAI:M sub-scores (Table 1) at Week 4 ($p<0.05$ vs the placebo arm for all comparisons), with benefits sustained at Week 12 ($p<0.01$ vs the placebo arm for all comparisons except absenteeism, which had low baseline scores).
- The observed increases in EQ-5D VAS score (Figure 3) and MSQ v2.1 domain scores (Table 1) at Weeks 4 and 12 showed that eptinezumab improved quality of life more than placebo ($p<0.01$ for all comparisons).
- The changes from baseline in HADS-Anxiety and HADS-Depression subscale scores were greater for the eptinezumab arm than for the placebo arm at Week 4 ($p<0.01$, both comparisons), with greater improvements sustained at Week 12 ($p<0.001$, both comparisons) (Table 1).
- TSQM-9 scores for effectiveness, convenience, and overall satisfaction were greater for the eptinezumab arm vs the placebo arm at Week 4 and sustained at Week 12 ($p<0.001$ for all comparisons) (Table 1).

Figure 1. Demographics and baseline characteristics

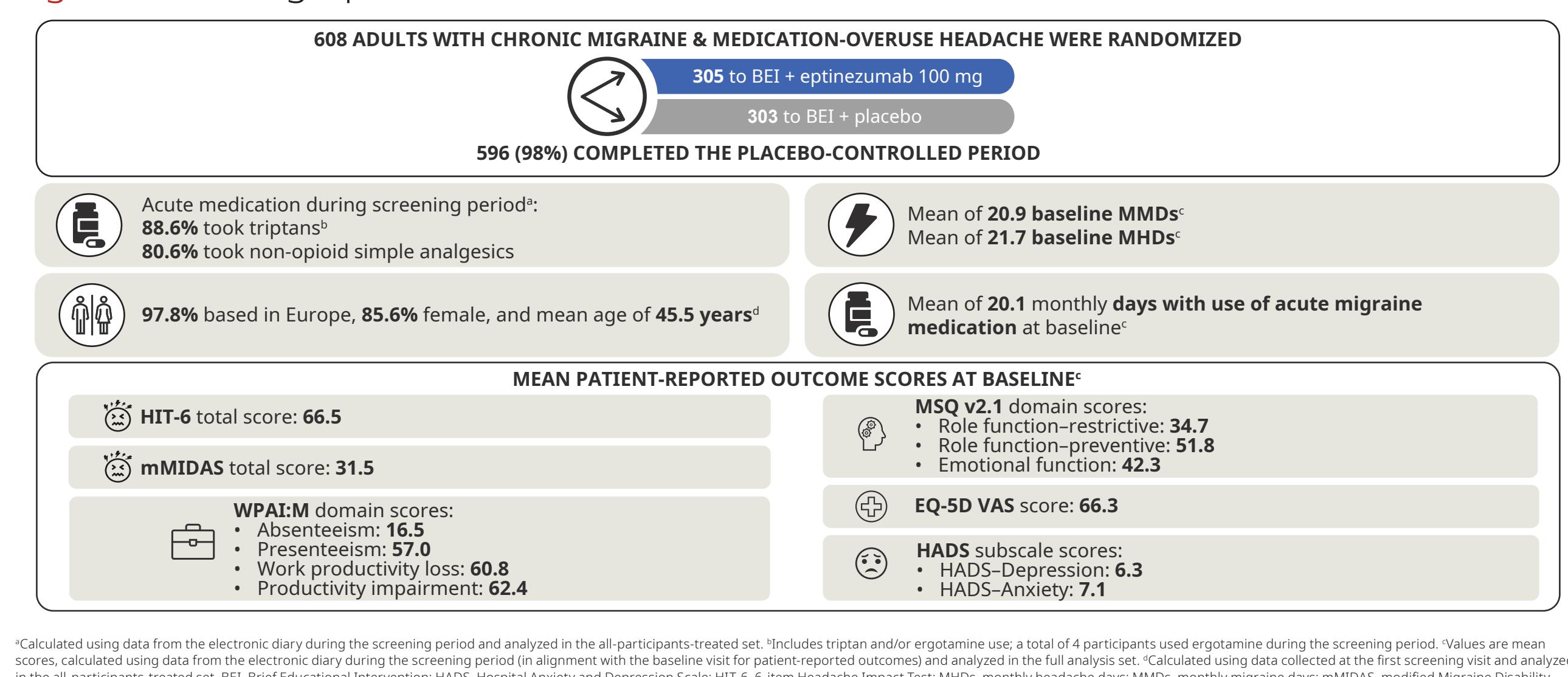


Figure 2. PGIC score and changes from baseline in HIT-6 total score and mMIDAS total score at Weeks 4 and 12

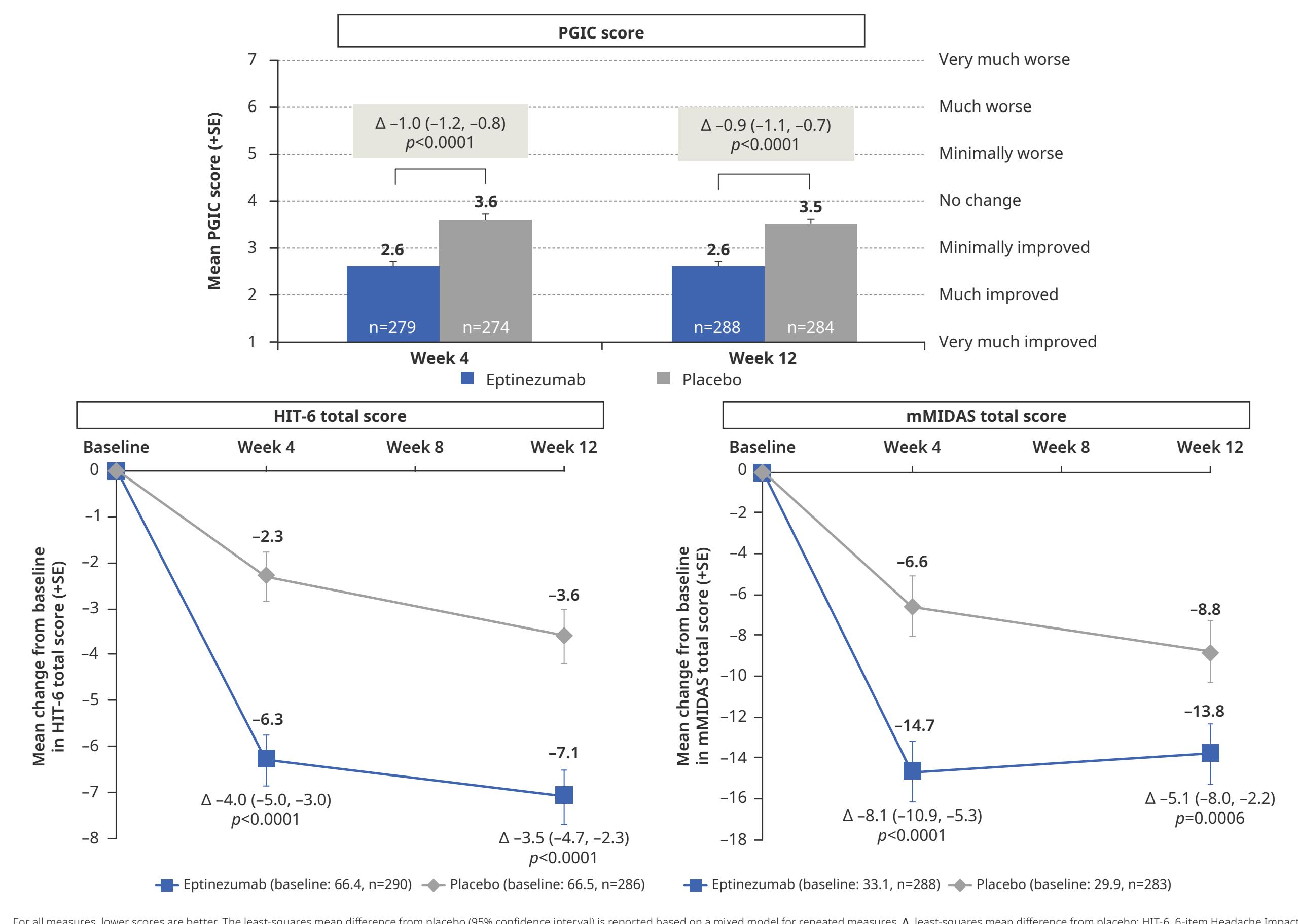


Figure 3. Changes from baseline in WPAI:M work productivity loss sub-score and EQ-5D VAS score at Weeks 4 and 12

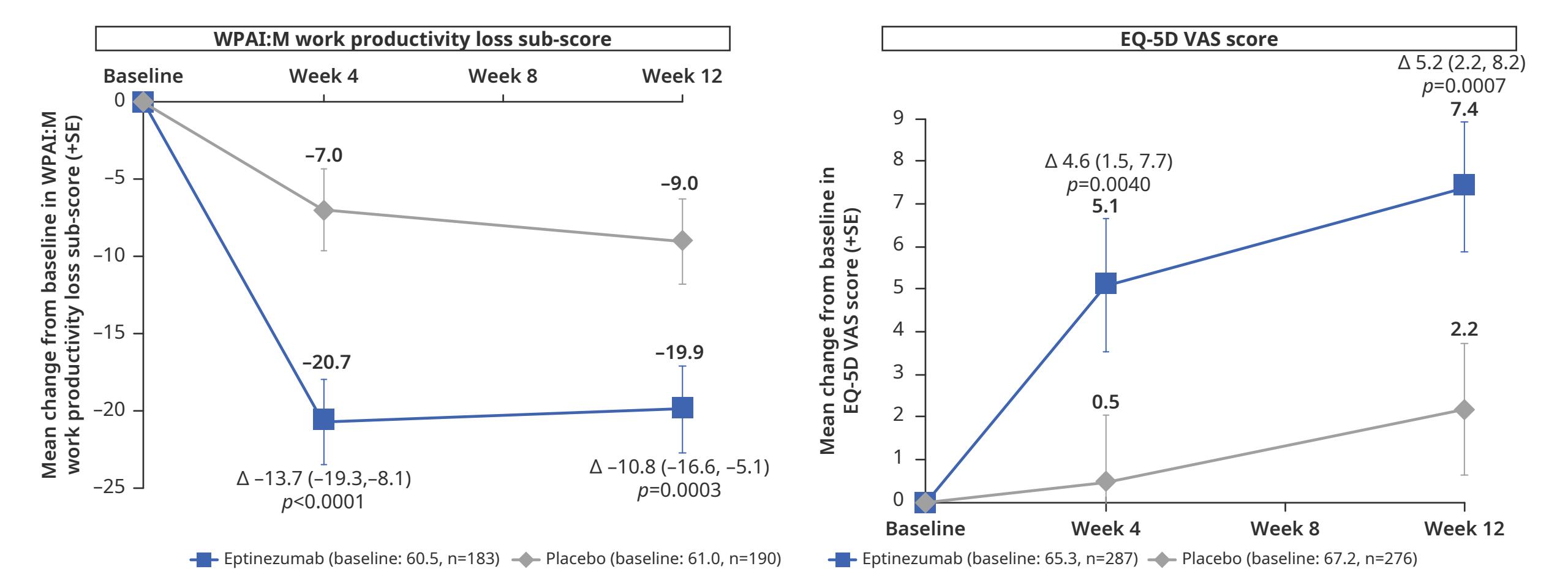


Table 1. Changes from baseline in WPAI:M, MSQ, and HADS sub-scores, and TSQM-9 domain scores at Weeks 4 and 12

WPAI:M sub-score: Absenteeism ^a	Treatment arm	Change from baseline to Week 4	Difference from placebo at Week 4	Change from baseline to Week 12	Difference from placebo at Week 12
	Eptinezumab, n=195	-4.7 (2.04)	-4.6 (-8.9, -0.4) p=0.0338	-4.7 (2.34)	-3.5 (-8.8, 1.7) p=0.1881
	Placebo, n=196	-0.1 (2.00)		-1.2 (2.32)	
	Eptinezumab, n=183	-20.3 (2.57)	-13.1 (-18.4, -7.8) p<0.0001	-19.1 (2.60)	-9.0 (-14.4, -3.6) p=0.0011
	Placebo, n=190	-7.2 (2.50)		-10.1 (2.54)	
	Eptinezumab, n=287	-20.7 (2.13)	-12.6 (-16.9, -8.3) p<0.0001	-18.9 (2.07)	-8.5 (-12.5, -4.4) p=0.0001
	Placebo, n=276	-8.2 (2.14)		-10.4 (2.08)	
WPAI:M sub-score: Activity impairment ^a	Eptinezumab, n=287	24.0 (1.90)	13.9 (10.2, 17.6) p<0.0001	22.6 (1.87)	10.8 (7.2, 14.3) p=0.0001
	Placebo, n=277	10.2 (1.90)		11.8 (1.88)	
	Eptinezumab, n=287	18.6 (1.86)	10.7 (7.1, 14.3) p<0.0001	18.0 (1.83)	7.8 (4.3, 11.3) p=0.0001
	Placebo, n=277	7.9 (1.86)		10.2 (1.84)	
MSQ domain score: Role function-restrictive ^b	Eptinezumab, n=287	23.8 (2.14)	13.7 (9.6, 17.8) p<0.0001	22.1 (2.19)	10.4 (6.1, 14.7) p=0.0001
	Placebo, n=277	10.1 (2.15)		11.7 (2.19)	
	Eptinezumab, n=287	-1.3 (0.26)	-0.8 (-1.4, -0.3) p=0.0017	-1.4 (0.26)	-1.0 (-1.5, -0.5) p=0.0001
	Placebo, n=276	-0.5 (0.26)		-0.4 (0.26)	
HADS subscale score: Anxiety ^c	Eptinezumab, n=287	-1.6 (0.29)	-1.0 (-1.5, -0.4) p=0.0006	-1.8 (0.30)	-1.2 (-1.8, -0.6) p=0.0001
	Placebo, n=276	-0.6 (0.30)		-0.6 (0.30)	
TSQM-9 domain score: Effectiveness ^d	Eptinezumab, n=288	58.2 (2.23)	19.2 (14.9, 23.5) p<0.0001	58.0 (2.26)	17.1 (12.6, 21.5) p=0.0001
	Placebo, n=281	39.0 (2.24)		40.9 (2.28)	
TSQM-9 domain score: Convenience ^d	Eptinezumab, n=288	69.6 (1.74)	6.0 (2.6, 9.3) p=0.0005	69.4 (1.79)	6.3 (2.8, 9.8) p=0.0005
	Placebo, n=281	63.6 (1.74)		63.1 (1.80)	
TSQM-9 domain score: Overall satisfaction ^d	Eptinezumab, n=288	59.6 (2.10)	16.0 (12.0, 20.0) p<0.0001	62.5 (2.14)	15.6 (11.4, 19.7) p=0.0001
	Placebo, n=281	43.6 (2.10)		47.0 (2.15)	

The n-values represent the number of participants with available baseline data, except for TSQM-9, which uses Week 12 values because the measure was not captured at baseline. Scores and change from baseline values are LS mean (SE); difference from placebo values are LS mean (95% CI) based on a mixed model for repeated measures, with p-values vs the placebo arm provided. ^aLower scores are better. Higher scores are better. ^bCI, confidence interval; HADS, Hospital Anxiety and Depression Scale; LS, least-squares; SE, standard error; TSQM-9, 9-item Treatment Satisfaction Questionnaire for Medicine; WPAI:M, Migraine-specific Work Productivity and Activity Impairment questionnaire.

Key Points

- In the RESOLUTION trial, eptinezumab improved all patient-reported outcomes more than placebo in participants with CM and MOH who also received a brief educational intervention prior to dosing.
- At the first post-baseline time point (Week 4), greater improvements were observed for the eptinezumab arm than the placebo arm in patient-reported overall clinical impression of change, impact and burden of migraine, migraine-related work productivity and activity impairment, and health-related quality of life (migraine-specific and overall). Greater treatment satisfaction was also demonstrated in the eptinezumab arm compared to the placebo arm.
- The greater improvements in patient-reported outcomes and greater treatment satisfaction at Week 4 for the eptinezumab arm vs the placebo arm were sustained at Week 12.

Conclusion

- In people living with CM and MOH, following a brief educational intervention, eptinezumab was more effective than placebo in reducing migraine-related burden and impact, while improving work productivity and health-related quality of life.

Scan the QR code to access a PDF copy of this poster

References

- Diener HC, et al. *Lancet Neurol*. 2019;18(9):891-902.
- GBD 2016 Neurology Collaborators. *Lancet Neurol*. 2019;18(5):459-480.
- Schwedt TJ, et al. *Headache*. 2021;61(2):351-362.
- Buse DC, et al. *J Manag Care Spec Pharm*. 2020;26(10):1343-1343.
- The International Classification of Headache Disorders, 3rd edition. *Cephalgia*. 2018;38(1):1-211.
- Diener HC, et al. *Eur J Neurol*. 2020;27(7):1102-1116.
- Kebede YT, et al. *Front Res (Lausanne)*. 2023;4:1194134.
- Vypti [package insert]. Bothell, WA: Lundbeck Seattle BioPharmaceuticals Inc. Updated March 2025. Available online; accessed 24 April 2025.
- Jensen RH, et al. *Front Neurol*. 2023;14:1114654.
- Kristoffersen ES, et al. *J Neurol Neurosurg Psychiatry*. 2015;86(5):505-512.
- Houts CR, et al. *Headache*. 2020;60(9):2003-2013.
- Ailani J, et al. *Headache*. 2021;61(7):1021-1039.

Acknowledgments

This clinical trial was funded by H. Lundbeck A/S, Copenhagen, Denmark. The Medicine Group, LLC (New Hope, PA, USA) provided medical writing support, which was funded by H. Lundbeck A/S, Copenhagen, Denmark, and in accordance with Good Publication Practice guidelines.

Declarations of conflicting interests

SIJ reports grants for research from AbbVie, Aeon, Amgen, Aurovris, Axsome, Cassava, Cognition, Eli Lilly, Inhibikine, Ipsen, Lundbeck, Merz, Neuroleif, Pfizer, PrecisionMed, Revance, Scillex, Suven, and UCB; has served as a consultant, as a speaker, and/or on advisory boards (honoria) for AbbVie, Aeon, Alphagistics, Amgen, Arune, Atheneum, Axsome Therapeutics, Becker Pharmaceutical Consulting, BioDelivery Sciences International, Biohaven, Catch Therapeutics, Clearway Healthcare Partners, Click Therapeutics, CoolTech, CRG, Decision Resources, Defined Health, Dr. Reddy's, DRG, Eli Lilly, Lilly, Liltaya, ExpertConnect, FCB Health, Fenix, Gilmar Capital, GLG, Guidepoint Global, Health Advances, Health Science Communications, HMP Communications, Impel, Initiator Pharma, Interactive Forums, IOVIA, Keyquest, Ki Health Partners, Krog and Partners, Lundbeck, M3 Global Research, Magellan Health, Magnolia Innovation, Mirava Healthcare, MGH Holdings, Neurofront Therapeutics, Neuroliq, Novartis, Novartis, P Value Communications, Pain Insights, Palon Medical, Perforad, Pfizer, Pulumix, Putnam Associates, Rehate, SATI MedPartners, Satsuma, Scilex, Slingshot Insights, Sphera Global Insights, Strategy Inc, Synapse Medical Communication, System Analytic, Taylor and Francis, Tegus, Teva, Theranova, Third Bridge, Tonix, Trinity Partners, Unity HA, Vial, and Xoc, and receives salary from Dartmouth-Hitchcock Medical Center, Ki Health Partners, and Thomas Jefferson University. HWS has received personal fees from AbbVie, Eli Lilly, Lundbeck, Novartis, and Teva, and has received research grants from Novartis and Novo Nordisk Foundation. RHJ has given lectures