

Efficacy and safety of eptinezumab in chronic migraine: Randomized controlled trial in a predominantly Asian population

Shengyuan Yu,¹ Yasuhiko Matsumori,² Byung-Kun Kim,³ Anna Gryglas-Dworak,⁴ Gvantsa Giorgadze,⁵ Patricia Pozo-Rosich,⁶ Mette Krog Josiassen,⁷ Kristina Ranc,⁷ Anders Etrup,⁷ Aurélia Mittoux,⁷ Bjørn Sperling,⁷ Takaо Takeshima⁸

¹Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China; ²Sendai Headache and Neurology Clinic, Sendai, Japan; ³Eulji University School of Medicine, Seoul, South Korea; ⁴MIGRE Polskie Centrum Leczenia Migrény, Wrocław, Poland; ⁵Aversi Clinic LTD, Tbilisi, Georgia; ⁶Headache Unit, Neurology Department, Vall d'Hebron University Hospital; Headache and Neurological Pain Research Group, VHIR, Barcelona, Spain; ⁷H. Lundbeck A/S, Copenhagen, Denmark; ⁸Tominaga Hospital, Osaka, Japan

Data presented here are from a large-scale, phase 3 clinical trial to determine the efficacy and safety of eptinezumab, a monoclonal antibody targeted against CGRP, for the preventive treatment of migraine in a predominantly Asian population with chronic migraine.

Background

- Migraine is the second most burdensome neurological disorder in Asia.¹
- The International Headache Society (IHS) recommends acute and preventive pharmacological treatment to improve the management of migraine^{2,3}; however, there is a substantial unmet need in use of effective preventive treatment within Asian countries.^{4,5}
- Eptinezumab, a monoclonal antibody targeted against calcitonin gene-related peptide and approved for migraine prevention,⁶ demonstrated acceptable tolerability as well as early and sustained reductions in migraine frequency in primarily Western participants with episodic and chronic migraine (CM) in placebo-controlled trials.^{7,8}
- In a smaller phase 3 trial, eptinezumab 100 mg showed numerically favorable efficacy compared to placebo in a predominantly Asian population with CM and medication-overuse headache, with no new safety signals identified⁹; however, the efficacy and safety of eptinezumab in Asian populations with CM from a large-scale trial have not been previously reported.

Objective

- To evaluate the efficacy and safety of eptinezumab for the preventive treatment of migraine in a predominantly Asian population with CM.

Methods

- SUNRISE was a phase 3, multiregional, randomized, double-blind, placebo-controlled clinical trial that evaluated eptinezumab 100 mg and 300 mg for the preventive treatment of migraine (ClinicalTrials.gov: NCT04921384).
- The trial comprised a screening period (28–30 days); double-blind, placebo-controlled period (12 weeks; efficacy and safety); dose-blinded extension period (12 weeks; safety assessments only); and safety follow-up period (8 weeks) (Figure 1).
- Adults (18–75 years)–diagnosed with CM with a history of ≥15 monthly headache days and ≥8 monthly migraine days (MMDs) during the 3 months prior to screening and confirmed during the screening period–were randomized 1:1:1 to intravenous eptinezumab 100 mg, eptinezumab 300 mg, or placebo at baseline.
- Safety over the placebo-controlled period was assessed in the all-participants-treated set (all randomized participants who received an infusion of double-blind trial medication). Safety over the extension period was assessed in the all-participants-treated set (all randomized participants who received an infusion of dose-blinded trial medication during the extension period). Efficacy was assessed in the full analysis set (all participants treated in the placebo-controlled period who had a valid assessment of baseline MMDs and ≥1 valid post-baseline 4-week assessment of MMDs across Weeks 1–12).
- Endpoints presented here:
 - Primary endpoint:** Change from baseline in MMDs (Weeks 1–12)
 - Key secondary endpoints:** Proportion of participants with ≥50% reduction from baseline in MMDs (Weeks 1–12); proportion of participants with ≥75% reduction from baseline in MMDs (Weeks 1–4; Weeks 1–12); and proportion of participants experiencing migraine on the day after dosing (Day 1)
 - Patient-reported outcomes (as secondary endpoints):** Patient Global Impression of Change (PGIC) score at Week 12 and patient-identified most bothersome symptom (PI-MBS) score at Week 12
 - Safety endpoints:** Treatment-emergent adverse events (TEAEs), vital signs, laboratory test values, and electrocardiogram parameter values

- The primary and key secondary efficacy outcomes were analyzed using a statistical hierarchy controlling for multiple comparisons. P-values presented are for each eptinezumab dose group vs placebo.
- For the primary efficacy endpoint, the change from baseline was analyzed using a mixed model for repeated measures, with month, treatment, and location as fixed factors, baseline MMDs as a continuous covariate, treatment-by-month interaction, and baseline MMDs-by-month interaction. An unstructured variance matrix was used to model within-participant errors.

Results

Participants (Figure 2)

- Of 983 participants randomized, 978 (99%) were treated and 939 (96%) completed the placebo-controlled period; 96% of participants who entered the extension period completed it.
- Most participants were from Asia (63%), with the remainder from Europe (37%); participants had a mean of 17.4 baseline MMDs and 42% had medication-overuse headache as a concurrent diagnosis.

Efficiency outcomes

- The mean changes from baseline in MMDs across Weeks 1–12 were -7.2 (100 mg), -7.5 (300 mg), and -4.8 (placebo); $p<0.0001$ for both doses vs placebo (Figure 3), with similar changes in MMDs across each 4-week interval (Figure 3).
- Eptinezumab 100 mg and 300 mg demonstrated odds ratios >2 compared to placebo for achieving ≥50% reduction in MMDs over Weeks 1–4 (Figure 4), as well as ≥75% reduction in MMDs over Weeks 1–4 and Weeks 1–12 (Figure 4).
- The proportion of participants experiencing migraine on Day 1 was lower with both doses of eptinezumab than with placebo (Figure 4).
- PGIC and PI-MBS scores showed greater improvements with eptinezumab than with placebo at each time point across Weeks 1–12 (Figure 5).

Safety outcomes

- The rate of TEAEs was comparable across groups during the placebo-controlled period, with few serious TEAEs (<2%) or TEAEs leading to withdrawal (<2%) (Table 1).
- A similar safety profile was observed during the 12-week extension period (Table 1).
- During each treatment period, the most common TEAE was COVID-19, followed by nasopharyngitis (Table 1).
- TEAEs, vital signs, laboratory values, and electrocardiograms did not show new safety signals compared to previous trials of eptinezumab.^{7,9}

Figure 1. SUNRISE trial design

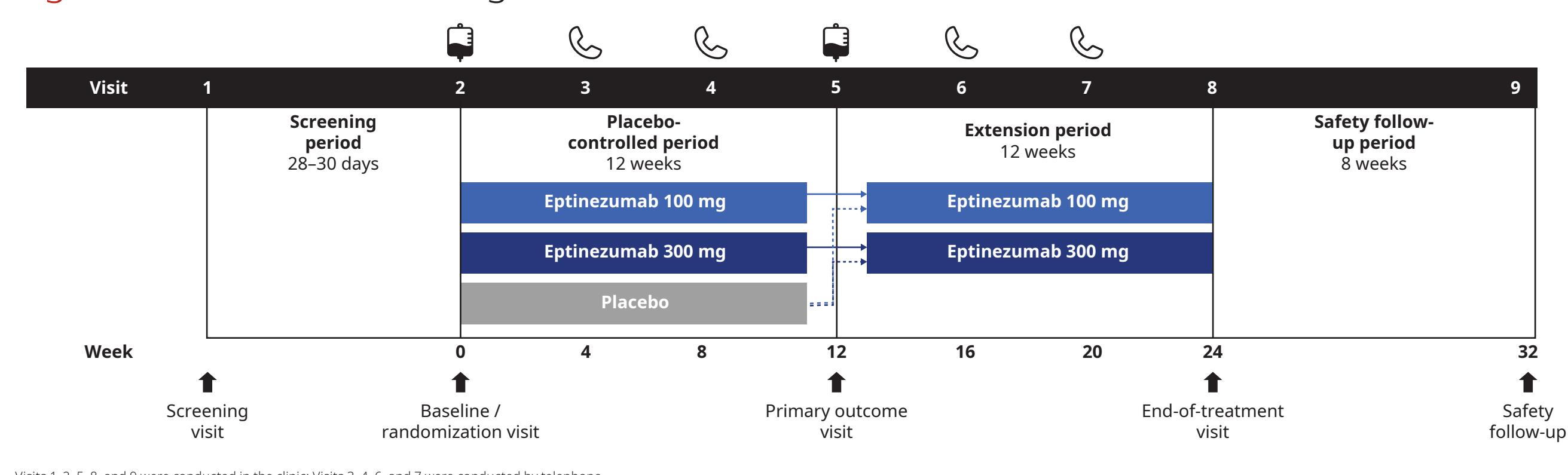


Figure 2. Baseline participant demographics

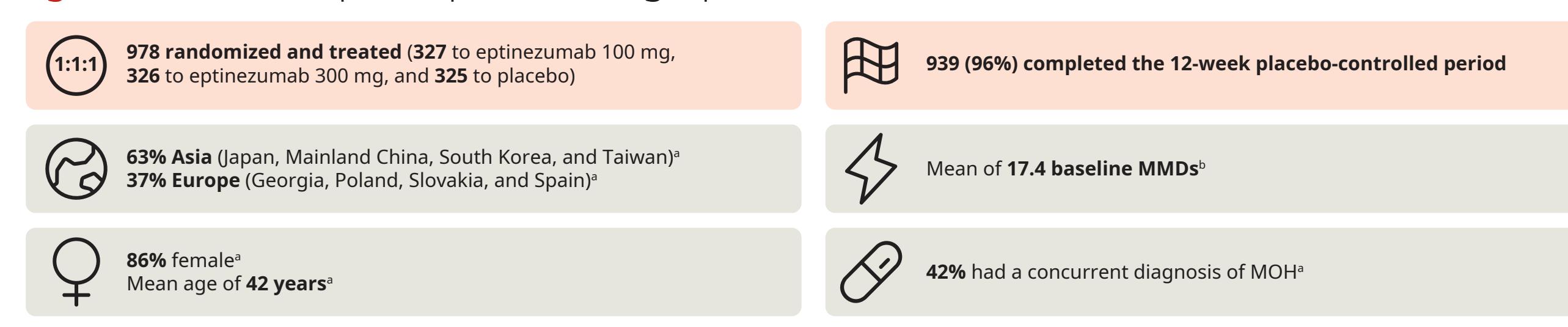


Figure 3. Change from baseline in MMDs over Weeks 1–12 and 4-week intervals

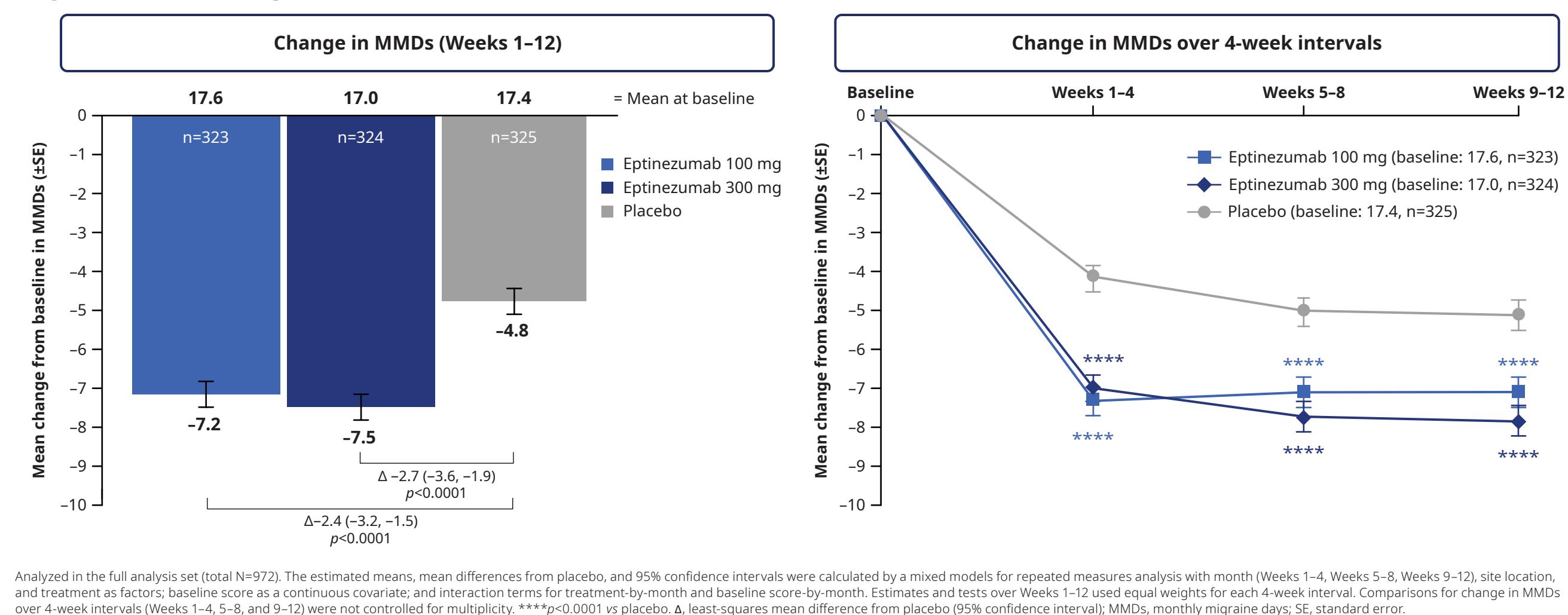


Figure 4. Responder endpoints: ≥50% MMD responder rate, ≥75% MMD responder rate, and percentage of participants with migraine on Day 1

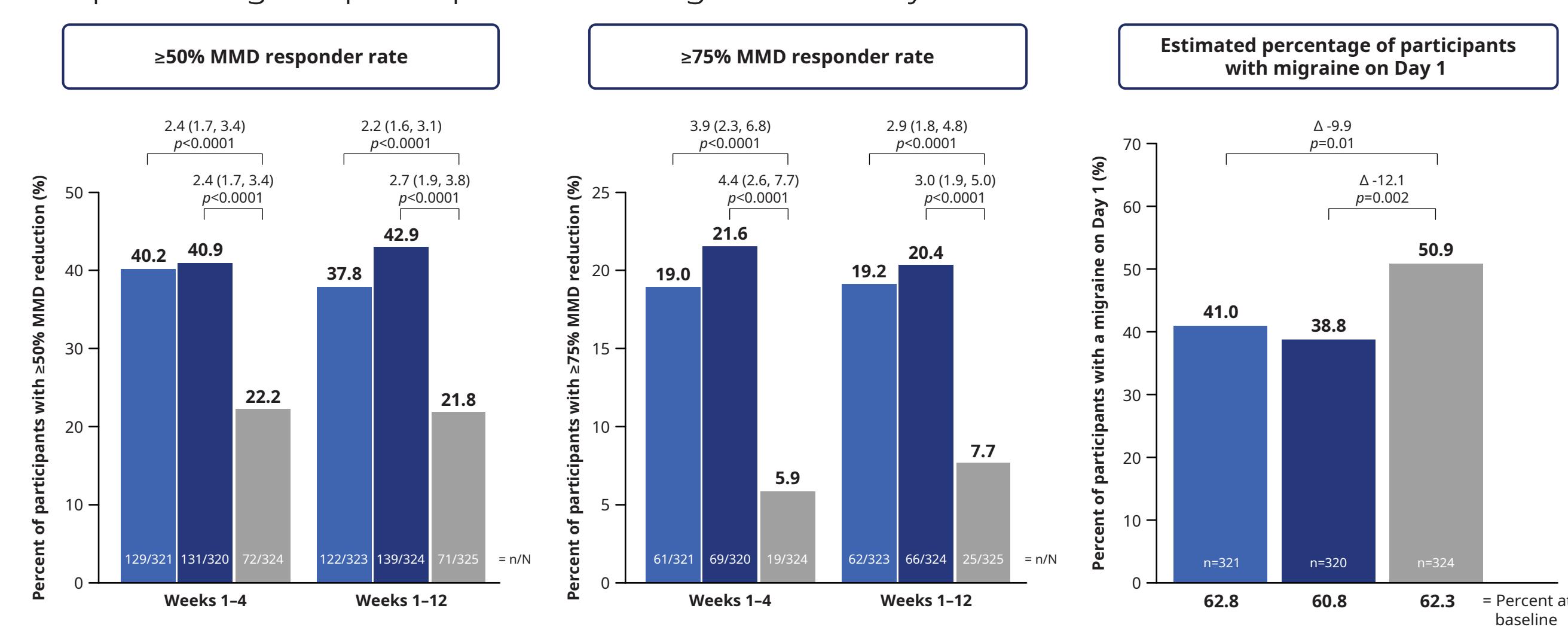


Figure 5. Patient-reported improvements: Mean PGIC score and mean PI-MBS score

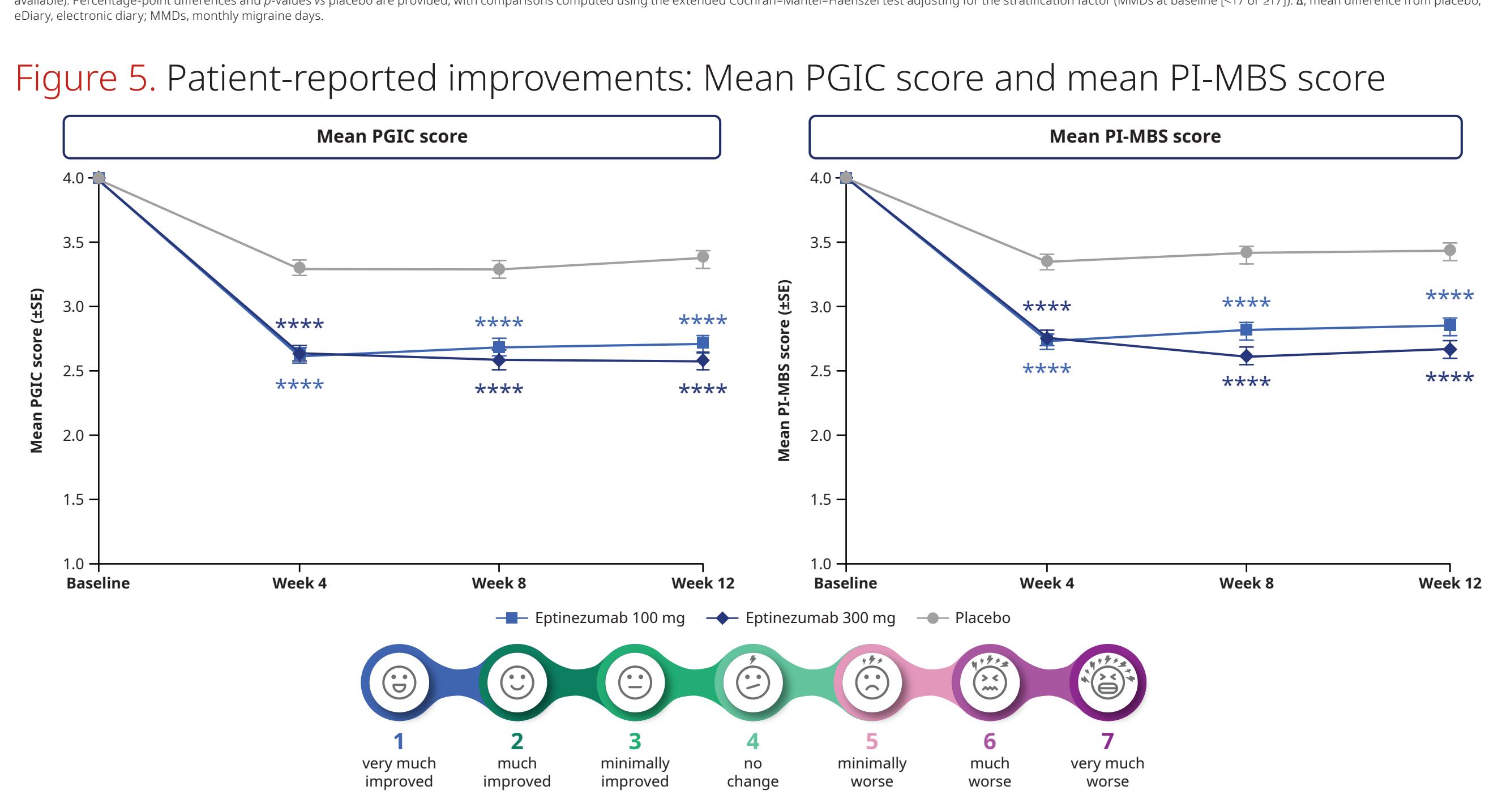


Table 1. Summary of TEAEs during the placebo-controlled period and during the extension period

Participants, n (%)	Placebo-controlled period (Weeks 1–12)			Extension period (Weeks 13–24)		
	Eptinezumab 100 mg (n=327) ^a	Eptinezumab 300 mg (n=326) ^a	Placebo (n=325) ^a	Eptinezumab 100 mg–100 mg (n=262) ^b	Eptinezumab 300 mg–300 mg (n=260) ^b	Placebo–Eptinezumab 100 mg (n=128) ^b
TEAEs	123 (37.6)	105 (32.2)	109 (33.5)	111 (42.4)	100 (39.1)	46 (35.9)
Serious adverse events	5 (1.5)	3 (0.9)	4 (1.2)	8 (3.1)	3 (1.2)	5 (3.9)
TEAEs leading to withdrawal	4 (1.2)	1 (0.3)	2 (0.6)	0	0	2 (1.6)
TEAEs leading to infusion interruption/termination	3 (0.9)	1 (0.3)	0	1 (0.4)	0	0
Most common TEAEs (>2% of either arm)	COVID-19 Nasopharyngitis Upper respiratory tract infection Urinary tract infection	18 (5.5) 11 (3.4) 6 (1.8) 7 (2.1)	15 (4.6) 11 (3.4) 6 (1.8) 5 (1.5)	14 (4.3) 16 (4.9) 9 (2.8) 3 (0.9)	17 (6.5) 11 (4.2) 9 (3.4) 6 (2.3)	20 (7.8) 9 (3.5) 6 (2.3) 4 (1.6)

^aData from the placebo-controlled period are from the all-participants-treated set (total N=978). ^bData from the extension period are from the all-participants-treated-extension set (total N=777); groups refer to the randomly allocated treatment sequence assigned at baseline (i.e., eptinezumab throughout, or placebo followed by eptinezumab). COVID-19, coronavirus disease 2019; TEAE, treatment-emergent adverse event.

Key Points

- Eptinezumab met the primary endpoint and all key secondary efficacy endpoints in the SUNRISE trial.
- When compared to placebo, eptinezumab 100 mg and 300 mg demonstrated statistically significant reductions in MMDs across Weeks 1–12, with greater rates of ≥50% (Weeks 1–12) and ≥75% (Weeks 1–4; Weeks 1–12) reductions from baseline in MMDs, and a lower estimated percentage of participants experiencing migraine on Day 1.
- Both eptinezumab doses were associated with better PGIC and PI-MBS scores across Weeks 1–12 compared to placebo.
- Both doses of eptinezumab were generally well tolerated, with no new safety signals identified relative to prior migraine trials.

Conclusion

- In a predominantly Asian population with CM, eptinezumab 100 mg and 300 mg demonstrated statistically significant reductions in MMDs and were associated with better patient-reported outcomes when compared to placebo, with efficacy observed as early as Day 1 and sustained through 12 weeks, and with a well-tolerated safety profile consistent with previous trials.

Scan the QR code to access a PDF copy of this poster

References

- Wang Y, et al. *Neurology*. 2023;100(21):e2141-e2154.
- Puledda F, et al. *Cephalgia*. 2024;44(8).
- Puledda F, et al. *Cephalgia*. 2024;44(9).
- Hirata K, et al. *Curr Med Res Opin*. 2021;37(11):1945-1955.
- Wang YF, et al. *Front Neurol*. 2023;14:122912.
- Yyepi [prescribing information]. Bothell, WA: Lundbeck Seattle BioPharmaceuticals, Inc; 2025.
- Ashina M, et al. *Cephalgia*. 2020;40(3):241-254.
- Lipton RB, et al. *Neurology*. 2020;94(13):e1365-e1377.
- Yu S, et al. *BMC Neurol*. 2023;23(1):441.

Acknowledgements

This clinical trial and medical writing support were sponsored and funded by H. Lundbeck A/S (Copenhagen, Denmark). The Medicine Group, LLC (New Hope, PA, United States) provided medical writing support in accordance with Good Publication Practice guidelines.

Declarations of conflicting interests

SY declares no conflicts of interest. YM reports personal consultancy fees from Amgen, Astellas BioPharma K.K., Daiichi Sankyo Company, Limited, Eli Lilly Japan K.K., and Otsuka Pharmaceutical Co., Ltd. B-K has received honoraria as a consultant and speaker from AbbVie, Lundbeck Korea, Organon Korea, Pfizer Korea, SK Pharmaceuticals, and Teva Korea. His research group has received research grants from Pfizer Korea and funding for clinical trials from AbbVie, Lundbeck, Novartis, Pfizer, and Teva Pharmaceuticals. He is on editorial boards of *Headache and Pain Research* and *Journal of Clinical Neurology*. AG-D has received fees from AbbVie, Amgen, Lundbeck, Pfizer, and Teva while serving as a principal investigator in clinical trials, as well as for speaking and training. GG received fees from Lundbeck while serving as a principal investigator in clinical trials. PP-R has received honoraria, in the last 36 months, as a consultant and speaker from AbbVie, Almirall, Dr. Reddy's, Eli Lilly, Lundbeck, Medscape, Novartis, Organon Pfizer, and Teva Pharmaceuticals. His research group has received research grants from AbbVie, AGAUR, ERNeuron, FEDER RISCAT, Instituto Investigación Carlos III, MICINN, Novartis, and Teva Pharmaceuticals, and has received funding for clinical trials from AbbVie, Amgen, Biohaven, Eli Lilly, Lundbeck, Novartis, Pfizer, and Teva Pharmaceuticals. She is the Honorary Secretary of the International Headache Society and an associate editor for *Cephalgia* and *Neurologia*. She is the founder of www.midolordecabeza.org, a platform to give information and tools to physicians and people who suffer from migraine and other headaches. MKJ and BS are full-time employees of H. Lundbeck A/S and own stock or stock options in H. Lundbeck A/S. KR, AE, and AM are full-time employees of H. Lundbeck A/S. TT is an advisor to Hedgehog MedTech, Inc. and Sawai Pharmaceutical Co., Ltd.

Poster IHC25-PO-318

Presented at the 22nd Congress of the International Headache Society (IHC 2025)
September 10–13, 2025
São Paulo, Brazil